File size: 18,979 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
"""
Script to run within Blender to render a 3D model as RGBAD images.

Example usage

    blender -b -P blender_script.py -- \
        --input_path ../../examples/example_data/corgi.ply \
        --output_path render_out

Pass `--camera_pose z-circular-elevated` for the rendering used to compute
CLIP R-Precision results.

The output directory will include metadata json files for each rendered view,
as well as a global metadata file for the render. Each image will be saved as
a collection of 16-bit PNG files for each channel (rgbad), as well as a full
grayscale render of the view.
"""

import argparse
import json
import math
import os
import random
import sys

import bpy
from mathutils import Vector
from mathutils.noise import random_unit_vector

MAX_DEPTH = 5.0
FORMAT_VERSION = 6
UNIFORM_LIGHT_DIRECTION = [0.09387503, -0.63953443, -0.7630093]


def clear_scene():
    bpy.ops.object.select_all(action="SELECT")
    bpy.ops.object.delete()


def clear_lights():
    bpy.ops.object.select_all(action="DESELECT")
    for obj in bpy.context.scene.objects.values():
        if isinstance(obj.data, bpy.types.Light):
            obj.select_set(True)
    bpy.ops.object.delete()


def import_model(path):
    clear_scene()
    _, ext = os.path.splitext(path)
    ext = ext.lower()
    if ext == ".obj":
        bpy.ops.import_scene.obj(filepath=path)
    elif ext in [".glb", ".gltf"]:
        bpy.ops.import_scene.gltf(filepath=path)
    elif ext == ".stl":
        bpy.ops.import_mesh.stl(filepath=path)
    elif ext == ".fbx":
        bpy.ops.import_scene.fbx(filepath=path)
    elif ext == ".dae":
        bpy.ops.wm.collada_import(filepath=path)
    elif ext == ".ply":
        bpy.ops.import_mesh.ply(filepath=path)
    else:
        raise RuntimeError(f"unexpected extension: {ext}")


def scene_root_objects():
    for obj in bpy.context.scene.objects.values():
        if not obj.parent:
            yield obj


def scene_bbox(single_obj=None, ignore_matrix=False):
    bbox_min = (math.inf,) * 3
    bbox_max = (-math.inf,) * 3
    found = False
    for obj in scene_meshes() if single_obj is None else [single_obj]:
        found = True
        for coord in obj.bound_box:
            coord = Vector(coord)
            if not ignore_matrix:
                coord = obj.matrix_world @ coord
            bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
            bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
    if not found:
        raise RuntimeError("no objects in scene to compute bounding box for")
    return Vector(bbox_min), Vector(bbox_max)


def scene_meshes():
    for obj in bpy.context.scene.objects.values():
        if isinstance(obj.data, (bpy.types.Mesh)):
            yield obj


def normalize_scene():
    bbox_min, bbox_max = scene_bbox()
    scale = 1 / max(bbox_max - bbox_min)

    for obj in scene_root_objects():
        obj.scale = obj.scale * scale

    # Apply scale to matrix_world.
    bpy.context.view_layer.update()

    bbox_min, bbox_max = scene_bbox()
    offset = -(bbox_min + bbox_max) / 2
    for obj in scene_root_objects():
        obj.matrix_world.translation += offset

    bpy.ops.object.select_all(action="DESELECT")


def create_camera():
    # https://b3d.interplanety.org/en/how-to-create-camera-through-the-blender-python-api/
    camera_data = bpy.data.cameras.new(name="Camera")
    camera_object = bpy.data.objects.new("Camera", camera_data)
    bpy.context.scene.collection.objects.link(camera_object)
    bpy.context.scene.camera = camera_object


def set_camera(direction, camera_dist=2.0):
    camera_pos = -camera_dist * direction
    bpy.context.scene.camera.location = camera_pos

    # https://blender.stackexchange.com/questions/5210/pointing-the-camera-in-a-particular-direction-programmatically
    rot_quat = direction.to_track_quat("-Z", "Y")
    bpy.context.scene.camera.rotation_euler = rot_quat.to_euler()

    bpy.context.view_layer.update()


def randomize_camera(camera_dist=2.0):
    direction = random_unit_vector()
    set_camera(direction, camera_dist=camera_dist)


def pan_camera(time, axis="Z", camera_dist=2.0, elevation=-0.1):
    angle = time * math.pi * 2
    direction = [-math.cos(angle), -math.sin(angle), -elevation]
    assert axis in ["X", "Y", "Z"]
    if axis == "X":
        direction = [direction[2], *direction[:2]]
    elif axis == "Y":
        direction = [direction[0], -elevation, direction[1]]
    direction = Vector(direction).normalized()
    set_camera(direction, camera_dist=camera_dist)


def place_camera(time, camera_pose_mode="random", camera_dist_min=2.0, camera_dist_max=2.0):
    camera_dist = random.uniform(camera_dist_min, camera_dist_max)
    if camera_pose_mode == "random":
        randomize_camera(camera_dist=camera_dist)
    elif camera_pose_mode == "z-circular":
        pan_camera(time, axis="Z", camera_dist=camera_dist)
    elif camera_pose_mode == "z-circular-elevated":
        pan_camera(time, axis="Z", camera_dist=camera_dist, elevation=0.2617993878)
    else:
        raise ValueError(f"Unknown camera pose mode: {camera_pose_mode}")


def create_light(location, energy=1.0, angle=0.5 * math.pi / 180):
    # https://blender.stackexchange.com/questions/215624/how-to-create-a-light-with-the-python-api-in-blender-2-92
    light_data = bpy.data.lights.new(name="Light", type="SUN")
    light_data.energy = energy
    light_data.angle = angle
    light_object = bpy.data.objects.new(name="Light", object_data=light_data)

    direction = -location
    rot_quat = direction.to_track_quat("-Z", "Y")
    light_object.rotation_euler = rot_quat.to_euler()
    bpy.context.view_layer.update()

    bpy.context.collection.objects.link(light_object)
    light_object.location = location


def create_random_lights(count=4, distance=2.0, energy=1.5):
    clear_lights()
    for _ in range(count):
        create_light(random_unit_vector() * distance, energy=energy)


def create_camera_light():
    clear_lights()
    create_light(bpy.context.scene.camera.location, energy=5.0)


def create_uniform_light(backend):
    clear_lights()
    # Random direction to decorrelate axis-aligned sides.
    pos = Vector(UNIFORM_LIGHT_DIRECTION)
    angle = 0.0092 if backend == "CYCLES" else math.pi
    create_light(pos, energy=5.0, angle=angle)
    create_light(-pos, energy=5.0, angle=angle)


def create_vertex_color_shaders():
    # By default, Blender will ignore vertex colors in both the
    # Eevee and Cycles backends, since these colors aren't
    # associated with a material.
    #
    # What we do here is create a simple material shader and link
    # the vertex color to the material color.
    for obj in bpy.context.scene.objects.values():
        if not isinstance(obj.data, (bpy.types.Mesh)):
            continue

        if len(obj.data.materials):
            # We don't want to override any existing materials.
            continue

        color_keys = (obj.data.vertex_colors or {}).keys()
        if not len(color_keys):
            # Many objects will have no materials *or* vertex colors.
            continue

        mat = bpy.data.materials.new(name="VertexColored")
        mat.use_nodes = True

        # There should be a Principled BSDF by default.
        bsdf_node = None
        for node in mat.node_tree.nodes:
            if node.type == "BSDF_PRINCIPLED":
                bsdf_node = node
        assert bsdf_node is not None, "material has no Principled BSDF node to modify"

        socket_map = {}
        for input in bsdf_node.inputs:
            socket_map[input.name] = input

        # Make sure nothing lights the object except for the diffuse color.
        socket_map["Specular"].default_value = 0.0
        socket_map["Roughness"].default_value = 1.0

        v_color = mat.node_tree.nodes.new("ShaderNodeVertexColor")
        v_color.layer_name = color_keys[0]

        mat.node_tree.links.new(v_color.outputs[0], socket_map["Base Color"])

        obj.data.materials.append(mat)


def create_default_materials():
    for obj in bpy.context.scene.objects.values():
        if isinstance(obj.data, (bpy.types.Mesh)):
            if not len(obj.data.materials):
                mat = bpy.data.materials.new(name="DefaultMaterial")
                mat.use_nodes = True
                obj.data.materials.append(mat)


def find_materials():
    all_materials = set()
    for obj in bpy.context.scene.objects.values():
        if not isinstance(obj.data, (bpy.types.Mesh)):
            continue
        for mat in obj.data.materials:
            all_materials.add(mat)
    return all_materials


def get_socket_value(tree, socket):
    default = socket.default_value
    if not isinstance(default, float):
        default = list(default)
    for link in tree.links:
        if link.to_socket == socket:
            return (link.from_socket, default)
    return (None, default)


def clear_socket_input(tree, socket):
    for link in list(tree.links):
        if link.to_socket == socket:
            tree.links.remove(link)


def set_socket_value(tree, socket, socket_and_default):
    clear_socket_input(tree, socket)
    old_source_socket, default = socket_and_default
    if isinstance(default, float) and not isinstance(socket.default_value, float):
        # Codepath for setting Emission to a previous alpha value.
        socket.default_value = [default] * 3 + [1.0]
    else:
        socket.default_value = default
    if old_source_socket is not None:
        tree.links.new(old_source_socket, socket)


def setup_nodes(output_path, capturing_material_alpha: bool = False):
    tree = bpy.context.scene.node_tree
    links = tree.links

    for node in tree.nodes:
        tree.nodes.remove(node)

    # Helpers to perform math on links and constants.
    def node_op(op: str, *args, clamp=False):
        node = tree.nodes.new(type="CompositorNodeMath")
        node.operation = op
        if clamp:
            node.use_clamp = True
        for i, arg in enumerate(args):
            if isinstance(arg, (int, float)):
                node.inputs[i].default_value = arg
            else:
                links.new(arg, node.inputs[i])
        return node.outputs[0]

    def node_clamp(x, maximum=1.0):
        return node_op("MINIMUM", x, maximum)

    def node_mul(x, y, **kwargs):
        return node_op("MULTIPLY", x, y, **kwargs)

    input_node = tree.nodes.new(type="CompositorNodeRLayers")
    input_node.scene = bpy.context.scene

    input_sockets = {}
    for output in input_node.outputs:
        input_sockets[output.name] = output

    if capturing_material_alpha:
        color_socket = input_sockets["Image"]
    else:
        raw_color_socket = input_sockets["Image"]

        # We apply sRGB here so that our fixed-point depth map and material
        # alpha values are not sRGB, and so that we perform ambient+diffuse
        # lighting in linear RGB space.
        color_node = tree.nodes.new(type="CompositorNodeConvertColorSpace")
        color_node.from_color_space = "Linear"
        color_node.to_color_space = "sRGB"
        tree.links.new(raw_color_socket, color_node.inputs[0])
        color_socket = color_node.outputs[0]
    split_node = tree.nodes.new(type="CompositorNodeSepRGBA")
    tree.links.new(color_socket, split_node.inputs[0])
    # Create separate file output nodes for every channel we care about.
    # The process calling this script must decide how to recombine these
    # channels, possibly into a single image.
    for i, channel in enumerate("rgba") if not capturing_material_alpha else [(0, "MatAlpha")]:
        output_node = tree.nodes.new(type="CompositorNodeOutputFile")
        output_node.base_path = f"{output_path}_{channel}"
        links.new(split_node.outputs[i], output_node.inputs[0])

    if capturing_material_alpha:
        # No need to re-write depth here.
        return

    depth_out = node_clamp(node_mul(input_sockets["Depth"], 1 / MAX_DEPTH))
    output_node = tree.nodes.new(type="CompositorNodeOutputFile")
    output_node.base_path = f"{output_path}_depth"
    links.new(depth_out, output_node.inputs[0])


def render_scene(output_path, fast_mode: bool):
    use_workbench = bpy.context.scene.render.engine == "BLENDER_WORKBENCH"
    if use_workbench:
        # We must use a different engine to compute depth maps.
        bpy.context.scene.render.engine = "BLENDER_EEVEE"
        bpy.context.scene.eevee.taa_render_samples = 1  # faster, since we discard image.
    if fast_mode:
        if bpy.context.scene.render.engine == "BLENDER_EEVEE":
            bpy.context.scene.eevee.taa_render_samples = 1
        elif bpy.context.scene.render.engine == "CYCLES":
            bpy.context.scene.cycles.samples = 256
    else:
        if bpy.context.scene.render.engine == "CYCLES":
            # We should still impose a per-frame time limit
            # so that we don't timeout completely.
            bpy.context.scene.cycles.time_limit = 40
    bpy.context.view_layer.update()
    bpy.context.scene.use_nodes = True
    bpy.context.scene.view_layers["ViewLayer"].use_pass_z = True
    bpy.context.scene.view_settings.view_transform = "Raw"  # sRGB done in graph nodes
    bpy.context.scene.render.film_transparent = True
    bpy.context.scene.render.resolution_x = 512
    bpy.context.scene.render.resolution_y = 512
    bpy.context.scene.render.image_settings.file_format = "PNG"
    bpy.context.scene.render.image_settings.color_mode = "BW"
    bpy.context.scene.render.image_settings.color_depth = "16"
    bpy.context.scene.render.filepath = output_path
    setup_nodes(output_path)
    bpy.ops.render.render(write_still=True)

    # The output images must be moved from their own sub-directories, or
    # discarded if we are using workbench for the color.
    for channel_name in ["r", "g", "b", "a", "depth"]:
        sub_dir = f"{output_path}_{channel_name}"
        image_path = os.path.join(sub_dir, os.listdir(sub_dir)[0])
        name, ext = os.path.splitext(output_path)
        if channel_name == "depth" or not use_workbench:
            os.rename(image_path, f"{name}_{channel_name}{ext}")
        else:
            os.remove(image_path)
        os.removedirs(sub_dir)

    if use_workbench:
        # Re-render RGBA using workbench with texture mode, since this seems
        # to show the most reasonable colors when lighting is broken.
        bpy.context.scene.use_nodes = False
        bpy.context.scene.render.engine = "BLENDER_WORKBENCH"
        bpy.context.scene.render.image_settings.color_mode = "RGBA"
        bpy.context.scene.render.image_settings.color_depth = "8"
        bpy.context.scene.display.shading.color_type = "TEXTURE"
        bpy.context.scene.display.shading.light = "FLAT"
        if fast_mode:
            # Single pass anti-aliasing.
            bpy.context.scene.display.render_aa = "FXAA"
        os.remove(output_path)
        bpy.ops.render.render(write_still=True)
        bpy.context.scene.render.image_settings.color_mode = "BW"
        bpy.context.scene.render.image_settings.color_depth = "16"


def scene_fov():
    x_fov = bpy.context.scene.camera.data.angle_x
    y_fov = bpy.context.scene.camera.data.angle_y
    width = bpy.context.scene.render.resolution_x
    height = bpy.context.scene.render.resolution_y
    if bpy.context.scene.camera.data.angle == x_fov:
        y_fov = 2 * math.atan(math.tan(x_fov / 2) * height / width)
    else:
        x_fov = 2 * math.atan(math.tan(y_fov / 2) * width / height)
    return x_fov, y_fov


def write_camera_metadata(path):
    x_fov, y_fov = scene_fov()
    bbox_min, bbox_max = scene_bbox()
    matrix = bpy.context.scene.camera.matrix_world
    with open(path, "w") as f:
        json.dump(
            dict(
                format_version=FORMAT_VERSION,
                max_depth=MAX_DEPTH,
                bbox=[list(bbox_min), list(bbox_max)],
                origin=list(matrix.col[3])[:3],
                x_fov=x_fov,
                y_fov=y_fov,
                x=list(matrix.col[0])[:3],
                y=list(-matrix.col[1])[:3],
                z=list(-matrix.col[2])[:3],
            ),
            f,
        )


def save_rendering_dataset(
    input_path: str,
    output_path: str,
    num_images: int,
    backend: str,
    light_mode: str,
    camera_pose: str,
    camera_dist_min: float,
    camera_dist_max: float,
    fast_mode: bool,
):
    assert light_mode in ["random", "uniform", "camera"]
    assert camera_pose in ["random", "z-circular", "z-circular-elevated"]

    import_model(input_path)
    bpy.context.scene.render.engine = backend
    normalize_scene()
    if light_mode == "random":
        create_random_lights()
    elif light_mode == "uniform":
        create_uniform_light(backend)
    create_camera()
    create_vertex_color_shaders()
    for i in range(num_images):
        t = i / max(num_images - 1, 1)  # same as np.linspace(0, 1, num_images)
        place_camera(
            t,
            camera_pose_mode=camera_pose,
            camera_dist_min=camera_dist_min,
            camera_dist_max=camera_dist_max,
        )
        if light_mode == "camera":
            create_camera_light()
        render_scene(
            os.path.join(output_path, f"{i:05}.png"),
            fast_mode=fast_mode,
        )
        write_camera_metadata(os.path.join(output_path, f"{i:05}.json"))
    with open(os.path.join(output_path, "info.json"), "w") as f:
        info = dict(
            backend=backend,
            light_mode=light_mode,
            fast_mode=fast_mode,
            format_version=FORMAT_VERSION,
            channels=["R", "G", "B", "A", "D"],
            scale=0.5,  # The scene is bounded by [-scale, scale].
        )
        json.dump(info, f)


def main():
    try:
        dash_index = sys.argv.index("--")
    except ValueError as exc:
        raise ValueError("arguments must be preceded by '--'") from exc

    raw_args = sys.argv[dash_index + 1 :]
    parser = argparse.ArgumentParser()
    parser.add_argument("--input_path", required=True, type=str)
    parser.add_argument("--output_path", required=True, type=str)
    parser.add_argument("--num_images", type=int, default=20)
    parser.add_argument("--backend", type=str, default="BLENDER_EEVEE")
    parser.add_argument("--light_mode", type=str, default="uniform")
    parser.add_argument("--camera_pose", type=str, default="random")
    parser.add_argument("--camera_dist_min", type=float, default=2.0)
    parser.add_argument("--camera_dist_max", type=float, default=2.0)
    parser.add_argument("--fast_mode", action="store_true")
    args = parser.parse_args(raw_args)

    save_rendering_dataset(
        input_path=args.input_path,
        output_path=args.output_path,
        num_images=args.num_images,
        backend=args.backend,
        light_mode=args.light_mode,
        camera_pose=args.camera_pose,
        camera_dist_min=args.camera_dist_min,
        camera_dist_max=args.camera_dist_max,
        fast_mode=args.fast_mode,
    )


main()