File size: 951 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
"""
Evaluate P-IS of a batch of point clouds.

The point cloud batch should be saved to an npz file, where there is an
arr_0 key of shape [N x K x 3], where K is the dimensionality of each
point cloud and N is the number of clouds.
"""

import argparse

from point_e.evals.feature_extractor import PointNetClassifier, get_torch_devices
from point_e.evals.fid_is import compute_inception_score
from point_e.evals.npz_stream import NpzStreamer


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--cache_dir", type=str, default=None)
    parser.add_argument("batch", type=str)
    args = parser.parse_args()

    print("creating classifier...")
    clf = PointNetClassifier(devices=get_torch_devices(), cache_dir=args.cache_dir)

    print("computing batch predictions")
    _, preds = clf.features_and_preds(NpzStreamer(args.batch))
    print(f"P-IS: {compute_inception_score(preds)}")


if __name__ == "__main__":
    main()