File size: 12,698 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
"""
Train a diffusion model on images.
"""
import json
import sys
import os

sys.path.append('.')

# from dnnlib import EasyDict
import traceback

import torch as th
import torch.multiprocessing as mp
import torch.distributed as dist
import numpy as np

import argparse
import dnnlib
from guided_diffusion import dist_util, logger
from guided_diffusion.resample import create_named_schedule_sampler
from guided_diffusion.script_util import (
    args_to_dict,
    add_dict_to_argparser,
    continuous_diffusion_defaults,
    model_and_diffusion_defaults,
    create_model_and_diffusion,
)
from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion
import nsr
import nsr.lsgm
# from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop

from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default
from datasets.shapenet import load_data, load_eval_data, load_memory_data
from nsr.losses.builder import E3DGELossClass

from torch_utils import legacy, misc
from torch.utils.data import Subset
from pdb import set_trace as st

from dnnlib.util import EasyDict, InfiniteSampler
# from .vit_triplane_train_FFHQ import init_dataset_kwargs
from datasets.eg3d_dataset import init_dataset_kwargs

# from torch.utils.tensorboard import SummaryWriter

SEED = 0


def training_loop(args):
    # def training_loop(args):
    logger.log("dist setup...")

    th.cuda.set_device(
        args.local_rank)  # set this line to avoid extra memory on rank 0
    th.cuda.empty_cache()

    th.cuda.manual_seed_all(SEED)
    np.random.seed(SEED)

    dist_util.setup_dist(args)

    # st() # mark

    # logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"])
    logger.configure(dir=args.logdir)

    logger.log("creating ViT encoder and NSR decoder...")
    # st() # mark
    device = dist_util.dev()

    args.img_size = [args.image_size_encoder]

    logger.log("creating model and diffusion...")
    # * set denoise model args

    if args.denoise_in_channels == -1:
        args.diffusion_input_size = args.image_size_encoder
        args.denoise_in_channels = args.out_chans
        args.denoise_out_channels = args.out_chans
    else:
        assert args.denoise_out_channels != -1

    # args.image_size = args.image_size_encoder  # 224, follow the triplane size

    # if args.diffusion_input_size == -1:
    # else:
    # args.image_size = args.diffusion_input_size

    denoise_model, diffusion = create_model_and_diffusion(
        **args_to_dict(args,
                       model_and_diffusion_defaults().keys()))
    denoise_model.to(dist_util.dev())
    denoise_model.train()

    opts = eg3d_options_default()
    if args.sr_training:
        args.sr_kwargs = dnnlib.EasyDict(
            channel_base=opts.cbase,
            channel_max=opts.cmax,
            fused_modconv_default='inference_only',
            use_noise=True
        )  # ! close noise injection? since noise_mode='none' in eg3d

    logger.log("creating encoder and NSR decoder...")
    auto_encoder = create_3DAE_model(
        **args_to_dict(args,
                       encoder_and_nsr_defaults().keys()))

    auto_encoder.to(device)
    auto_encoder.eval()

    # * load G_ema modules into autoencoder
    # * clone G_ema.decoder to auto_encoder triplane
    # logger.log("AE triplane decoder reuses G_ema decoder...")
    # auto_encoder.decoder.register_buffer('w_avg', G_ema.backbone.mapping.w_avg)

    # auto_encoder.decoder.triplane_decoder.decoder.load_state_dict(  # type: ignore
    #     G_ema.decoder.state_dict())  # type: ignore

    # set grad=False in this manner suppresses the DDP forward no grad error.
    logger.log("freeze triplane decoder...")
    for param in auto_encoder.decoder.triplane_decoder.parameters(
    ):  # type: ignore
        # for param in auto_encoder.decoder.triplane_decoder.decoder.parameters(): # type: ignore
        param.requires_grad_(False)

    # if args.sr_training:

    #     logger.log("AE triplane decoder reuses G_ema SR module...")
    #     # auto_encoder.decoder.triplane_decoder.superresolution.load_state_dict(  # type: ignore
    #     #     G_ema.superresolution.state_dict())  # type: ignore

    #     # set grad=False in this manner suppresses the DDP forward no grad error.
    # logger.log("freeze SR module...")
    # for param in auto_encoder.decoder.superresolution.parameters(): # type: ignore
    #     param.requires_grad_(False)

    #     # del G_ema
    #     th.cuda.empty_cache()

    if args.cfg in ('afhq', 'ffhq'):

        if args.sr_training:

            logger.log("AE triplane decoder reuses G_ema SR module...")
            auto_encoder.decoder.triplane_decoder.superresolution.load_state_dict(  # type: ignore
                G_ema.superresolution.state_dict())  # type: ignore

            # set grad=False in this manner suppresses the DDP forward no grad error.
            for param in auto_encoder.decoder.triplane_decoder.superresolution.parameters(
            ):  # type: ignore
                param.requires_grad_(False)

        # ! load data
        logger.log("creating eg3d data loader...")
        training_set_kwargs, dataset_name = init_dataset_kwargs(
            data=args.data_dir,
            class_name='datasets.eg3d_dataset.ImageFolderDataset'
        )  # only load pose here
        # if args.cond and not training_set_kwargs.use_labels:
        # raise Exception('check here')

        # training_set_kwargs.use_labels = args.cond
        training_set_kwargs.use_labels = True
        training_set_kwargs.xflip = True
        training_set_kwargs.random_seed = SEED
        # desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}'

        # * construct ffhq/afhq dataset
        training_set = dnnlib.util.construct_class_by_name(
            **training_set_kwargs)  # subclass of training.dataset.Dataset

        training_set = dnnlib.util.construct_class_by_name(
            **training_set_kwargs)  # subclass of training.dataset.Dataset

        training_set_sampler = InfiniteSampler(
            dataset=training_set,
            rank=dist_util.get_rank(),
            num_replicas=dist_util.get_world_size(),
            seed=SEED)

        data = iter(
            th.utils.data.DataLoader(
                dataset=training_set,
                sampler=training_set_sampler,
                batch_size=args.batch_size,
                pin_memory=True,
                num_workers=args.num_workers,
            ))
        #  prefetch_factor=2))

        eval_data = th.utils.data.DataLoader(dataset=Subset(
            training_set, np.arange(10)),
                                             batch_size=args.eval_batch_size,
                                             num_workers=1)

    else:

        logger.log("creating data loader...")
        # TODO, load shapenet data
        # data = load_data(
        # st() mark
        if args.overfitting:
            logger.log("create overfitting memory dataset")
            data = load_memory_data(
                file_path=args.eval_data_dir,
                batch_size=args.batch_size,
                reso=args.image_size,
                reso_encoder=args.image_size_encoder,  # 224 -> 128
                num_workers=args.num_workers,
                load_depth=True  # for evaluation
            )
        else:
            logger.log("create all instances dataset")
            # st() mark
            data = load_data(
                file_path=args.data_dir,
                batch_size=args.batch_size,
                reso=args.image_size,
                reso_encoder=args.image_size_encoder,  # 224 -> 128
                num_workers=args.num_workers,
                load_depth=True,
                preprocess=auto_encoder.preprocess,  # clip
                dataset_size=args.dataset_size,
                # load_depth=True # for evaluation
            )
            # st() mark
        eval_data = load_eval_data(
            file_path=args.eval_data_dir,
            batch_size=args.eval_batch_size,
            reso=args.image_size,
            reso_encoder=args.image_size_encoder,  # 224 -> 128
            num_workers=args.num_workers,
            load_depth=True  # for evaluation
        )

    # let all processes sync up before starting with a new epoch of training

    if dist_util.get_rank() == 0:
        with open(os.path.join(args.logdir, 'args.json'), 'w') as f:
            json.dump(vars(args), f, indent=2)

    args.schedule_sampler = create_named_schedule_sampler(
        args.schedule_sampler, diffusion)

    opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys()))
    loss_class = E3DGELossClass(device, opt).to(device)

    logger.log("training...")

    TrainLoop = {
        'adm': nsr.TrainLoop3DDiffusion,
        'dit': nsr.TrainLoop3DDiffusionDiT,
        'ssd': nsr.TrainLoop3DDiffusionSingleStage,
        # 'ssd_cvD': nsr.TrainLoop3DDiffusionSingleStagecvD,
        'ssd_cvD_sds': nsr.TrainLoop3DDiffusionSingleStagecvDSDS,
        'ssd_cvd_sds_no_separate_sds_step':
        nsr.TrainLoop3DDiffusionSingleStagecvDSDS_sdswithrec,
        'vpsde_lsgm_noD': nsr.lsgm.TrainLoop3DDiffusionLSGM_noD,  # use vpsde
        # 'vpsde_lsgm': nsr.TrainLoop3DDiffusionLSGM, # use vpsde
        # 'vpsde': nsr.TrainLoop3DDiffusion_vpsde,
    }[args.trainer_name]

    if 'vpsde' in args.trainer_name:
        sde_diffusion = make_sde_diffusion(
            dnnlib.EasyDict(
                args_to_dict(args,
                             continuous_diffusion_defaults().keys())))
        assert args.mixed_prediction, 'enable mixed_prediction by default'
        logger.log('create VPSDE diffusion.')
    else:
        sde_diffusion = None

    dist_util.synchronize()

    TrainLoop(rec_model=auto_encoder,
              denoise_model=denoise_model,
              diffusion=diffusion,
              sde_diffusion=sde_diffusion,
              loss_class=loss_class,
              data=data,
              eval_data=eval_data,
              **vars(args)).run_loop()


def create_argparser(**kwargs):
    # defaults.update(model_and_diffusion_defaults())

    defaults = dict(
        dataset_size=-1,
        diffusion_input_size=-1,
        trainer_name='adm',
        use_amp=False,
        triplane_scaling_divider=1.0,  # divide by this value
        overfitting=False,
        num_workers=4,
        image_size=128,
        image_size_encoder=224,
        iterations=150000,
        schedule_sampler="uniform",
        anneal_lr=False,
        lr=5e-5,
        weight_decay=0.0,
        lr_anneal_steps=0,
        batch_size=1,
        eval_batch_size=12,
        microbatch=-1,  # -1 disables microbatches
        ema_rate="0.9999",  # comma-separated list of EMA values
        log_interval=50,
        eval_interval=2500,
        save_interval=10000,
        resume_checkpoint="",
        resume_checkpoint_EG3D="",
        use_fp16=False,
        fp16_scale_growth=1e-3,
        data_dir="",
        eval_data_dir="",
        # load_depth=False, # TODO
        logdir="/mnt/lustre/yslan/logs/nips23/",
        load_submodule_name='',  # for loading pretrained auto_encoder model
        ignore_resume_opt=False,
        # freeze_ae=False,
        denoised_ae=True,
    )

    defaults.update(model_and_diffusion_defaults())
    defaults.update(continuous_diffusion_defaults())
    defaults.update(encoder_and_nsr_defaults())  # type: ignore
    defaults.update(loss_defaults())

    parser = argparse.ArgumentParser()
    add_dict_to_argparser(parser, defaults)

    return parser


if __name__ == "__main__":
    # os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO"
    # os.environ["NCCL_DEBUG"] = "INFO"

    os.environ[
        "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"  # set to DETAIL for runtime logging.

    args = create_argparser().parse_args()
    args.local_rank = int(os.environ["LOCAL_RANK"])
    args.gpus = th.cuda.device_count()

    # opts = dnnlib.EasyDict(vars(args))  # compatiable with triplane original settings
    # opts = args
    args.rendering_kwargs = rendering_options_defaults(args)

    # Launch processes.
    logger.log('Launching processes...')

    logger.log('Available devices ', th.cuda.device_count())
    logger.log('Current cuda device ', th.cuda.current_device())
    # logger.log('GPU Device name:', th.cuda.get_device_name(th.cuda.current_device()))

    try:
        training_loop(args)
    # except KeyboardInterrupt as e:
    except Exception as e:
        # print(e)
        traceback.print_exc()
        dist_util.cleanup()  # clean port and socket when ctrl+c