File size: 9,656 Bytes
fc6af43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/*
 * Copyright (C) 2023, Inria
 * GRAPHDECO research group, https://team.inria.fr/graphdeco
 * All rights reserved.
 *
 * This software is free for non-commercial, research and evaluation use 
 * under the terms of the LICENSE.md file.
 *
 * For inquiries contact  george.drettakis@inria.fr
 */

#ifndef CUDA_RASTERIZER_AUXILIARY_H_INCLUDED
#define CUDA_RASTERIZER_AUXILIARY_H_INCLUDED

#include "config.h"
#include "stdio.h"

#define BLOCK_SIZE (BLOCK_X * BLOCK_Y)
#define NUM_WARPS (BLOCK_SIZE/32)

#define TIGHTBBOX 0
#define RENDER_AXUTILITY 1
#define DEPTH_OFFSET 0
#define ALPHA_OFFSET 1
#define NORMAL_OFFSET 2 
#define MIDDEPTH_OFFSET 5
#define DISTORTION_OFFSET 6
// #define MEDIAN_WEIGHT_OFFSET 7

// distortion helper macros
#define BACKFACE_CULL 1
#define DUAL_VISIABLE 1
// #define NEAR_PLANE 0.2
// #define FAR_PLANE 100.0
#define DETACH_WEIGHT 0

__device__ const float near_n = 0.2;
__device__ const float far_n = 100.0;
__device__ const float FilterSize = 0.707106; // sqrt(2) / 2
__device__ const float FilterInvSquare = 2.0f;

// Spherical harmonics coefficients
__device__ const float SH_C0 = 0.28209479177387814f;
__device__ const float SH_C1 = 0.4886025119029199f;
__device__ const float SH_C2[] = {
	1.0925484305920792f,
	-1.0925484305920792f,
	0.31539156525252005f,
	-1.0925484305920792f,
	0.5462742152960396f
};
__device__ const float SH_C3[] = {
	-0.5900435899266435f,
	2.890611442640554f,
	-0.4570457994644658f,
	0.3731763325901154f,
	-0.4570457994644658f,
	1.445305721320277f,
	-0.5900435899266435f
};

__forceinline__ __device__ float ndc2Pix(float v, int S)
{
	return ((v + 1.0) * S - 1.0) * 0.5;
}

__forceinline__ __device__ void getRect(const float2 p, int max_radius, uint2& rect_min, uint2& rect_max, dim3 grid)
{
	rect_min = {
		min(grid.x, max((int)0, (int)((p.x - max_radius) / BLOCK_X))),
		min(grid.y, max((int)0, (int)((p.y - max_radius) / BLOCK_Y)))
	};
	rect_max = {
		min(grid.x, max((int)0, (int)((p.x + max_radius + BLOCK_X - 1) / BLOCK_X))),
		min(grid.y, max((int)0, (int)((p.y + max_radius + BLOCK_Y - 1) / BLOCK_Y)))
	};
}

__forceinline__ __device__ float3 transformPoint4x3(const float3& p, const float* matrix)
{
	float3 transformed = {
		matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z + matrix[12],
		matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z + matrix[13],
		matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z + matrix[14],
	};
	return transformed;
}

__forceinline__ __device__ float4 transformPoint4x4(const float3& p, const float* matrix)
{
	float4 transformed = {
		matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z + matrix[12],
		matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z + matrix[13],
		matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z + matrix[14],
		matrix[3] * p.x + matrix[7] * p.y + matrix[11] * p.z + matrix[15]
	};
	return transformed;
}

__forceinline__ __device__ float3 transformVec4x3(const float3& p, const float* matrix)
{
	float3 transformed = {
		matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z,
		matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z,
		matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z,
	};
	return transformed;
}

__forceinline__ __device__ float3 transformVec4x3Transpose(const float3& p, const float* matrix)
{
	float3 transformed = {
		matrix[0] * p.x + matrix[1] * p.y + matrix[2] * p.z,
		matrix[4] * p.x + matrix[5] * p.y + matrix[6] * p.z,
		matrix[8] * p.x + matrix[9] * p.y + matrix[10] * p.z,
	};
	return transformed;
}

__forceinline__ __device__ float dnormvdz(float3 v, float3 dv)
{
	float sum2 = v.x * v.x + v.y * v.y + v.z * v.z;
	float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2);
	float dnormvdz = (-v.x * v.z * dv.x - v.y * v.z * dv.y + (sum2 - v.z * v.z) * dv.z) * invsum32;
	return dnormvdz;
}

__forceinline__ __device__ float3 dnormvdv(float3 v, float3 dv)
{
	float sum2 = v.x * v.x + v.y * v.y + v.z * v.z;
	float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2);

	float3 dnormvdv;
	dnormvdv.x = ((+sum2 - v.x * v.x) * dv.x - v.y * v.x * dv.y - v.z * v.x * dv.z) * invsum32;
	dnormvdv.y = (-v.x * v.y * dv.x + (sum2 - v.y * v.y) * dv.y - v.z * v.y * dv.z) * invsum32;
	dnormvdv.z = (-v.x * v.z * dv.x - v.y * v.z * dv.y + (sum2 - v.z * v.z) * dv.z) * invsum32;
	return dnormvdv;
}

__forceinline__ __device__ float4 dnormvdv(float4 v, float4 dv)
{
	float sum2 = v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w;
	float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2);

	float4 vdv = { v.x * dv.x, v.y * dv.y, v.z * dv.z, v.w * dv.w };
	float vdv_sum = vdv.x + vdv.y + vdv.z + vdv.w;
	float4 dnormvdv;
	dnormvdv.x = ((sum2 - v.x * v.x) * dv.x - v.x * (vdv_sum - vdv.x)) * invsum32;
	dnormvdv.y = ((sum2 - v.y * v.y) * dv.y - v.y * (vdv_sum - vdv.y)) * invsum32;
	dnormvdv.z = ((sum2 - v.z * v.z) * dv.z - v.z * (vdv_sum - vdv.z)) * invsum32;
	dnormvdv.w = ((sum2 - v.w * v.w) * dv.w - v.w * (vdv_sum - vdv.w)) * invsum32;
	return dnormvdv;
}

__forceinline__ __device__ float3 cross(float3 a, float3 b){return make_float3(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x);}

__forceinline__ __device__ float3 operator*(float3 a, float3 b){return make_float3(a.x * b.x, a.y * b.y, a.z*b.z);}

__forceinline__ __device__ float2 operator*(float2 a, float2 b){return make_float2(a.x * b.x, a.y * b.y);}

__forceinline__ __device__ float3 operator*(float f, float3 a){return make_float3(f * a.x, f * a.y, f * a.z);}

__forceinline__ __device__ float2 operator*(float f, float2 a){return make_float2(f * a.x, f * a.y);}

__forceinline__ __device__ float3 operator-(float3 a, float3 b){return make_float3(a.x - b.x, a.y - b.y, a.z - b.z);}

__forceinline__ __device__ float2 operator-(float2 a, float2 b){return make_float2(a.x - b.x, a.y - b.y);}

__forceinline__ __device__ float sumf3(float3 a){return a.x + a.y + a.z;}

__forceinline__ __device__ float sumf2(float2 a){return a.x + a.y;}

__forceinline__ __device__ float3 sqrtf3(float3 a){return make_float3(sqrtf(a.x), sqrtf(a.y), sqrtf(a.z));}

__forceinline__ __device__ float2 sqrtf2(float2 a){return make_float2(sqrtf(a.x), sqrtf(a.y));}

__forceinline__ __device__ float3 minf3(float f, float3 a){return make_float3(min(f, a.x), min(f, a.y), min(f, a.z));}

__forceinline__ __device__ float2 minf2(float f, float2 a){return make_float2(min(f, a.x), min(f, a.y));}

__forceinline__ __device__ float3 maxf3(float f, float3 a){return make_float3(max(f, a.x), max(f, a.y), max(f, a.z));}

__forceinline__ __device__ float2 maxf2(float f, float2 a){return make_float2(max(f, a.x), max(f, a.y));}

__forceinline__ __device__ bool in_frustum(int idx,
	const float* orig_points,
	const float* viewmatrix,
	const float* projmatrix,
	bool prefiltered,
	float3& p_view)
{
	float3 p_orig = { orig_points[3 * idx], orig_points[3 * idx + 1], orig_points[3 * idx + 2] };

	// Bring points to screen space
	float4 p_hom = transformPoint4x4(p_orig, projmatrix);
	float p_w = 1.0f / (p_hom.w + 0.0000001f);
	float3 p_proj = { p_hom.x * p_w, p_hom.y * p_w, p_hom.z * p_w };
	p_view = transformPoint4x3(p_orig, viewmatrix);

	if (p_view.z <= 0.2f)// || ((p_proj.x < -1.3 || p_proj.x > 1.3 || p_proj.y < -1.3 || p_proj.y > 1.3)))
	{
		if (prefiltered)
		{
			printf("Point is filtered although prefiltered is set. This shouldn't happen!");
			__trap();
		}
		return false;
	}
	return true;
}

// adopt from gsplat: https://github.com/nerfstudio-project/gsplat/blob/main/gsplat/cuda/csrc/forward.cu
inline __device__ glm::mat3 quat_to_rotmat(const glm::vec4 quat) {
	// quat to rotation matrix
	float s = rsqrtf(
		quat.w * quat.w + quat.x * quat.x + quat.y * quat.y + quat.z * quat.z
	);
	float w = quat.x * s;
	float x = quat.y * s;
	float y = quat.z * s;
	float z = quat.w * s;

	// glm matrices are column-major
	return glm::mat3(
		1.f - 2.f * (y * y + z * z),
		2.f * (x * y + w * z),
		2.f * (x * z - w * y),
		2.f * (x * y - w * z),
		1.f - 2.f * (x * x + z * z),
		2.f * (y * z + w * x),
		2.f * (x * z + w * y),
		2.f * (y * z - w * x),
		1.f - 2.f * (x * x + y * y)
	);
}


inline __device__ glm::vec4
quat_to_rotmat_vjp(const glm::vec4 quat, const glm::mat3 v_R) {
	float s = rsqrtf(
		quat.w * quat.w + quat.x * quat.x + quat.y * quat.y + quat.z * quat.z
	);
	float w = quat.x * s;
	float x = quat.y * s;
	float y = quat.z * s;
	float z = quat.w * s;

	glm::vec4 v_quat;
	// v_R is COLUMN MAJOR
	// w element stored in x field
	v_quat.x =
		2.f * (
				  // v_quat.w = 2.f * (
				  x * (v_R[1][2] - v_R[2][1]) + y * (v_R[2][0] - v_R[0][2]) +
				  z * (v_R[0][1] - v_R[1][0])
			  );
	// x element in y field
	v_quat.y =
		2.f *
		(
			// v_quat.x = 2.f * (
			-2.f * x * (v_R[1][1] + v_R[2][2]) + y * (v_R[0][1] + v_R[1][0]) +
			z * (v_R[0][2] + v_R[2][0]) + w * (v_R[1][2] - v_R[2][1])
		);
	// y element in z field
	v_quat.z =
		2.f *
		(
			// v_quat.y = 2.f * (
			x * (v_R[0][1] + v_R[1][0]) - 2.f * y * (v_R[0][0] + v_R[2][2]) +
			z * (v_R[1][2] + v_R[2][1]) + w * (v_R[2][0] - v_R[0][2])
		);
	// z element in w field
	v_quat.w =
		2.f *
		(
			// v_quat.z = 2.f * (
			x * (v_R[0][2] + v_R[2][0]) + y * (v_R[1][2] + v_R[2][1]) -
			2.f * z * (v_R[0][0] + v_R[1][1]) + w * (v_R[0][1] - v_R[1][0])
		);
	return v_quat;
}


inline __device__ glm::mat3
scale_to_mat(const glm::vec2 scale, const float glob_scale) {
	glm::mat3 S = glm::mat3(1.f);
	S[0][0] = glob_scale * scale.x;
	S[1][1] = glob_scale * scale.y;
	// S[2][2] = glob_scale * scale.z;
	return S;
}



#define CHECK_CUDA(A, debug) \
A; if(debug) { \
auto ret = cudaDeviceSynchronize(); \
if (ret != cudaSuccess) { \
std::cerr << "\n[CUDA ERROR] in " << __FILE__ << "\nLine " << __LINE__ << ": " << cudaGetErrorString(ret); \
throw std::runtime_error(cudaGetErrorString(ret)); \
} \
}

#endif