Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,800 Bytes
fc6af43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
/*
* Copyright (C) 2023, Inria
* GRAPHDECO research group, https://team.inria.fr/graphdeco
* All rights reserved.
*
* This software is free for non-commercial, research and evaluation use
* under the terms of the LICENSE.md file.
*
* For inquiries contact george.drettakis@inria.fr
*/
#include "backward.h"
#include "auxiliary.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;
// Backward pass for conversion of spherical harmonics to RGB for
// each Gaussian.
__device__ void computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3* means, glm::vec3 campos, const float* shs, const bool* clamped, const glm::vec3* dL_dcolor, glm::vec3* dL_dmeans, glm::vec3* dL_dshs)
{
// Compute intermediate values, as it is done during forward
glm::vec3 pos = means[idx];
glm::vec3 dir_orig = pos - campos;
glm::vec3 dir = dir_orig / glm::length(dir_orig);
glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs;
// Use PyTorch rule for clamping: if clamping was applied,
// gradient becomes 0.
glm::vec3 dL_dRGB = dL_dcolor[idx];
dL_dRGB.x *= clamped[3 * idx + 0] ? 0 : 1;
dL_dRGB.y *= clamped[3 * idx + 1] ? 0 : 1;
dL_dRGB.z *= clamped[3 * idx + 2] ? 0 : 1;
glm::vec3 dRGBdx(0, 0, 0);
glm::vec3 dRGBdy(0, 0, 0);
glm::vec3 dRGBdz(0, 0, 0);
float x = dir.x;
float y = dir.y;
float z = dir.z;
// Target location for this Gaussian to write SH gradients to
glm::vec3* dL_dsh = dL_dshs + idx * max_coeffs;
// No tricks here, just high school-level calculus.
float dRGBdsh0 = SH_C0;
dL_dsh[0] = dRGBdsh0 * dL_dRGB;
if (deg > 0)
{
float dRGBdsh1 = -SH_C1 * y;
float dRGBdsh2 = SH_C1 * z;
float dRGBdsh3 = -SH_C1 * x;
dL_dsh[1] = dRGBdsh1 * dL_dRGB;
dL_dsh[2] = dRGBdsh2 * dL_dRGB;
dL_dsh[3] = dRGBdsh3 * dL_dRGB;
dRGBdx = -SH_C1 * sh[3];
dRGBdy = -SH_C1 * sh[1];
dRGBdz = SH_C1 * sh[2];
if (deg > 1)
{
float xx = x * x, yy = y * y, zz = z * z;
float xy = x * y, yz = y * z, xz = x * z;
float dRGBdsh4 = SH_C2[0] * xy;
float dRGBdsh5 = SH_C2[1] * yz;
float dRGBdsh6 = SH_C2[2] * (2.f * zz - xx - yy);
float dRGBdsh7 = SH_C2[3] * xz;
float dRGBdsh8 = SH_C2[4] * (xx - yy);
dL_dsh[4] = dRGBdsh4 * dL_dRGB;
dL_dsh[5] = dRGBdsh5 * dL_dRGB;
dL_dsh[6] = dRGBdsh6 * dL_dRGB;
dL_dsh[7] = dRGBdsh7 * dL_dRGB;
dL_dsh[8] = dRGBdsh8 * dL_dRGB;
dRGBdx += SH_C2[0] * y * sh[4] + SH_C2[2] * 2.f * -x * sh[6] + SH_C2[3] * z * sh[7] + SH_C2[4] * 2.f * x * sh[8];
dRGBdy += SH_C2[0] * x * sh[4] + SH_C2[1] * z * sh[5] + SH_C2[2] * 2.f * -y * sh[6] + SH_C2[4] * 2.f * -y * sh[8];
dRGBdz += SH_C2[1] * y * sh[5] + SH_C2[2] * 2.f * 2.f * z * sh[6] + SH_C2[3] * x * sh[7];
if (deg > 2)
{
float dRGBdsh9 = SH_C3[0] * y * (3.f * xx - yy);
float dRGBdsh10 = SH_C3[1] * xy * z;
float dRGBdsh11 = SH_C3[2] * y * (4.f * zz - xx - yy);
float dRGBdsh12 = SH_C3[3] * z * (2.f * zz - 3.f * xx - 3.f * yy);
float dRGBdsh13 = SH_C3[4] * x * (4.f * zz - xx - yy);
float dRGBdsh14 = SH_C3[5] * z * (xx - yy);
float dRGBdsh15 = SH_C3[6] * x * (xx - 3.f * yy);
dL_dsh[9] = dRGBdsh9 * dL_dRGB;
dL_dsh[10] = dRGBdsh10 * dL_dRGB;
dL_dsh[11] = dRGBdsh11 * dL_dRGB;
dL_dsh[12] = dRGBdsh12 * dL_dRGB;
dL_dsh[13] = dRGBdsh13 * dL_dRGB;
dL_dsh[14] = dRGBdsh14 * dL_dRGB;
dL_dsh[15] = dRGBdsh15 * dL_dRGB;
dRGBdx += (
SH_C3[0] * sh[9] * 3.f * 2.f * xy +
SH_C3[1] * sh[10] * yz +
SH_C3[2] * sh[11] * -2.f * xy +
SH_C3[3] * sh[12] * -3.f * 2.f * xz +
SH_C3[4] * sh[13] * (-3.f * xx + 4.f * zz - yy) +
SH_C3[5] * sh[14] * 2.f * xz +
SH_C3[6] * sh[15] * 3.f * (xx - yy));
dRGBdy += (
SH_C3[0] * sh[9] * 3.f * (xx - yy) +
SH_C3[1] * sh[10] * xz +
SH_C3[2] * sh[11] * (-3.f * yy + 4.f * zz - xx) +
SH_C3[3] * sh[12] * -3.f * 2.f * yz +
SH_C3[4] * sh[13] * -2.f * xy +
SH_C3[5] * sh[14] * -2.f * yz +
SH_C3[6] * sh[15] * -3.f * 2.f * xy);
dRGBdz += (
SH_C3[1] * sh[10] * xy +
SH_C3[2] * sh[11] * 4.f * 2.f * yz +
SH_C3[3] * sh[12] * 3.f * (2.f * zz - xx - yy) +
SH_C3[4] * sh[13] * 4.f * 2.f * xz +
SH_C3[5] * sh[14] * (xx - yy));
}
}
}
// The view direction is an input to the computation. View direction
// is influenced by the Gaussian's mean, so SHs gradients
// must propagate back into 3D position.
glm::vec3 dL_ddir(glm::dot(dRGBdx, dL_dRGB), glm::dot(dRGBdy, dL_dRGB), glm::dot(dRGBdz, dL_dRGB));
// Account for normalization of direction
float3 dL_dmean = dnormvdv(float3{ dir_orig.x, dir_orig.y, dir_orig.z }, float3{ dL_ddir.x, dL_ddir.y, dL_ddir.z });
// Gradients of loss w.r.t. Gaussian means, but only the portion
// that is caused because the mean affects the view-dependent color.
// Additional mean gradient is accumulated in below methods.
dL_dmeans[idx] += glm::vec3(dL_dmean.x, dL_dmean.y, dL_dmean.z);
}
// Backward version of the rendering procedure.
template <uint32_t C>
__global__ void __launch_bounds__(BLOCK_X * BLOCK_Y)
renderCUDA(
const uint2* __restrict__ ranges,
const uint32_t* __restrict__ point_list,
int W, int H,
float focal_x, float focal_y,
const float* __restrict__ bg_color,
const float2* __restrict__ points_xy_image,
const float4* __restrict__ normal_opacity,
const float* __restrict__ transMats,
const float* __restrict__ colors,
const float* __restrict__ depths,
const float* __restrict__ final_Ts,
const uint32_t* __restrict__ n_contrib,
const float* __restrict__ dL_dpixels,
const float* __restrict__ dL_depths,
float * __restrict__ dL_dtransMat,
float3* __restrict__ dL_dmean2D,
float* __restrict__ dL_dnormal3D,
float* __restrict__ dL_dopacity,
float* __restrict__ dL_dcolors)
{
// We rasterize again. Compute necessary block info.
auto block = cg::this_thread_block();
const uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X;
const uint2 pix_min = { block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y };
const uint2 pix_max = { min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y , H) };
const uint2 pix = { pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y };
const uint32_t pix_id = W * pix.y + pix.x;
const float2 pixf = {(float)pix.x, (float)pix.y};
const bool inside = pix.x < W&& pix.y < H;
const uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x];
const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE);
bool done = !inside;
int toDo = range.y - range.x;
__shared__ int collected_id[BLOCK_SIZE];
__shared__ float2 collected_xy[BLOCK_SIZE];
__shared__ float4 collected_normal_opacity[BLOCK_SIZE];
__shared__ float collected_colors[C * BLOCK_SIZE];
__shared__ float3 collected_Tu[BLOCK_SIZE];
__shared__ float3 collected_Tv[BLOCK_SIZE];
__shared__ float3 collected_Tw[BLOCK_SIZE];
// __shared__ float collected_depths[BLOCK_SIZE];
// In the forward, we stored the final value for T, the
// product of all (1 - alpha) factors.
const float T_final = inside ? final_Ts[pix_id] : 0;
float T = T_final;
// We start from the back. The ID of the last contributing
// Gaussian is known from each pixel from the forward.
uint32_t contributor = toDo;
const int last_contributor = inside ? n_contrib[pix_id] : 0;
float accum_rec[C] = { 0 };
float dL_dpixel[C];
#if RENDER_AXUTILITY
float dL_dreg;
float dL_ddepth;
float dL_daccum;
float dL_dnormal2D[3];
const int median_contributor = inside ? n_contrib[pix_id + H * W] : 0;
float dL_dmedian_depth;
float dL_dmax_dweight;
if (inside) {
dL_ddepth = dL_depths[DEPTH_OFFSET * H * W + pix_id];
dL_daccum = dL_depths[ALPHA_OFFSET * H * W + pix_id];
dL_dreg = dL_depths[DISTORTION_OFFSET * H * W + pix_id];
for (int i = 0; i < 3; i++)
dL_dnormal2D[i] = dL_depths[(NORMAL_OFFSET + i) * H * W + pix_id];
dL_dmedian_depth = dL_depths[MIDDEPTH_OFFSET * H * W + pix_id];
// dL_dmax_dweight = dL_depths[MEDIAN_WEIGHT_OFFSET * H * W + pix_id];
}
// for compute gradient with respect to depth and normal
float last_depth = 0;
float last_normal[3] = { 0 };
float accum_depth_rec = 0;
float accum_alpha_rec = 0;
float accum_normal_rec[3] = {0};
// for compute gradient with respect to the distortion map
const float final_D = inside ? final_Ts[pix_id + H * W] : 0;
const float final_D2 = inside ? final_Ts[pix_id + 2 * H * W] : 0;
const float final_A = 1 - T_final;
float last_dL_dT = 0;
#endif
if (inside){
for (int i = 0; i < C; i++)
dL_dpixel[i] = dL_dpixels[i * H * W + pix_id];
}
float last_alpha = 0;
float last_color[C] = { 0 };
// Gradient of pixel coordinate w.r.t. normalized
// screen-space viewport corrdinates (-1 to 1)
const float ddelx_dx = 0.5 * W;
const float ddely_dy = 0.5 * H;
// Traverse all Gaussians
for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE)
{
// Load auxiliary data into shared memory, start in the BACK
// and load them in revers order.
block.sync();
const int progress = i * BLOCK_SIZE + block.thread_rank();
if (range.x + progress < range.y)
{
const int coll_id = point_list[range.y - progress - 1];
collected_id[block.thread_rank()] = coll_id;
collected_xy[block.thread_rank()] = points_xy_image[coll_id];
collected_normal_opacity[block.thread_rank()] = normal_opacity[coll_id];
collected_Tu[block.thread_rank()] = {transMats[9 * coll_id+0], transMats[9 * coll_id+1], transMats[9 * coll_id+2]};
collected_Tv[block.thread_rank()] = {transMats[9 * coll_id+3], transMats[9 * coll_id+4], transMats[9 * coll_id+5]};
collected_Tw[block.thread_rank()] = {transMats[9 * coll_id+6], transMats[9 * coll_id+7], transMats[9 * coll_id+8]};
for (int i = 0; i < C; i++)
collected_colors[i * BLOCK_SIZE + block.thread_rank()] = colors[coll_id * C + i];
// collected_depths[block.thread_rank()] = depths[coll_id];
}
block.sync();
// Iterate over Gaussians
for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++)
{
// Keep track of current Gaussian ID. Skip, if this one
// is behind the last contributor for this pixel.
contributor--;
if (contributor >= last_contributor)
continue;
// compute ray-splat intersection as before
// Fisrt compute two homogeneous planes, See Eq. (8)
const float2 xy = collected_xy[j];
const float3 Tu = collected_Tu[j];
const float3 Tv = collected_Tv[j];
const float3 Tw = collected_Tw[j];
float3 k = pix.x * Tw - Tu;
float3 l = pix.y * Tw - Tv;
float3 p = cross(k, l);
if (p.z == 0.0) continue;
float2 s = {p.x / p.z, p.y / p.z};
float rho3d = (s.x * s.x + s.y * s.y);
float2 d = {xy.x - pixf.x, xy.y - pixf.y};
float rho2d = FilterInvSquare * (d.x * d.x + d.y * d.y);
float rho = min(rho3d, rho2d);
// compute depth
float c_d = (s.x * Tw.x + s.y * Tw.y) + Tw.z; // Tw * [u,v,1]
// if a point is too small, its depth is not reliable?
// c_d = (rho3d <= rho2d) ? c_d : Tw.z;
if (c_d < near_n) continue;
float4 nor_o = collected_normal_opacity[j];
float normal[3] = {nor_o.x, nor_o.y, nor_o.z};
float opa = nor_o.w;
// accumulations
float power = -0.5f * rho;
if (power > 0.0f)
continue;
const float G = exp(power);
const float alpha = min(0.99f, opa * G);
if (alpha < 1.0f / 255.0f)
continue;
T = T / (1.f - alpha);
const float dchannel_dcolor = alpha * T;
const float w = alpha * T;
// Propagate gradients to per-Gaussian colors and keep
// gradients w.r.t. alpha (blending factor for a Gaussian/pixel
// pair).
float dL_dalpha = 0.0f;
const int global_id = collected_id[j];
for (int ch = 0; ch < C; ch++)
{
const float c = collected_colors[ch * BLOCK_SIZE + j];
// Update last color (to be used in the next iteration)
accum_rec[ch] = last_alpha * last_color[ch] + (1.f - last_alpha) * accum_rec[ch];
last_color[ch] = c;
const float dL_dchannel = dL_dpixel[ch];
dL_dalpha += (c - accum_rec[ch]) * dL_dchannel;
// Update the gradients w.r.t. color of the Gaussian.
// Atomic, since this pixel is just one of potentially
// many that were affected by this Gaussian.
atomicAdd(&(dL_dcolors[global_id * C + ch]), dchannel_dcolor * dL_dchannel);
}
float dL_dz = 0.0f;
float dL_dweight = 0;
#if RENDER_AXUTILITY
const float m_d = far_n / (far_n - near_n) * (1 - near_n / c_d);
const float dmd_dd = (far_n * near_n) / ((far_n - near_n) * c_d * c_d);
if (contributor == median_contributor-1) {
dL_dz += dL_dmedian_depth;
// dL_dweight += dL_dmax_dweight;
}
#if DETACH_WEIGHT
// if not detached weight, sometimes
// it will bia toward creating extragated 2D Gaussians near front
dL_dweight += 0;
#else
dL_dweight += (final_D2 + m_d * m_d * final_A - 2 * m_d * final_D) * dL_dreg;
#endif
dL_dalpha += dL_dweight - last_dL_dT;
// propagate the current weight W_{i} to next weight W_{i-1}
last_dL_dT = dL_dweight * alpha + (1 - alpha) * last_dL_dT;
const float dL_dmd = 2.0f * (T * alpha) * (m_d * final_A - final_D) * dL_dreg;
dL_dz += dL_dmd * dmd_dd;
// Propagate gradients w.r.t ray-splat depths
accum_depth_rec = last_alpha * last_depth + (1.f - last_alpha) * accum_depth_rec;
last_depth = c_d;
dL_dalpha += (c_d - accum_depth_rec) * dL_ddepth;
// Propagate gradients w.r.t. color ray-splat alphas
accum_alpha_rec = last_alpha * 1.0 + (1.f - last_alpha) * accum_alpha_rec;
dL_dalpha += (1 - accum_alpha_rec) * dL_daccum;
// Propagate gradients to per-Gaussian normals
for (int ch = 0; ch < 3; ch++) {
accum_normal_rec[ch] = last_alpha * last_normal[ch] + (1.f - last_alpha) * accum_normal_rec[ch];
last_normal[ch] = normal[ch];
dL_dalpha += (normal[ch] - accum_normal_rec[ch]) * dL_dnormal2D[ch];
atomicAdd((&dL_dnormal3D[global_id * 3 + ch]), alpha * T * dL_dnormal2D[ch]);
}
#endif
dL_dalpha *= T;
// Update last alpha (to be used in the next iteration)
last_alpha = alpha;
// Account for fact that alpha also influences how much of
// the background color is added if nothing left to blend
float bg_dot_dpixel = 0;
for (int i = 0; i < C; i++)
bg_dot_dpixel += bg_color[i] * dL_dpixel[i];
dL_dalpha += (-T_final / (1.f - alpha)) * bg_dot_dpixel;
// Helpful reusable temporary variables
const float dL_dG = nor_o.w * dL_dalpha;
#if RENDER_AXUTILITY
dL_dz += alpha * T * dL_ddepth;
#endif
if (rho3d <= rho2d) {
// Update gradients w.r.t. covariance of Gaussian 3x3 (T)
const float2 dL_ds = {
dL_dG * -G * s.x + dL_dz * Tw.x,
dL_dG * -G * s.y + dL_dz * Tw.y
};
const float3 dz_dTw = {s.x, s.y, 1.0};
const float dsx_pz = dL_ds.x / p.z;
const float dsy_pz = dL_ds.y / p.z;
const float3 dL_dp = {dsx_pz, dsy_pz, -(dsx_pz * s.x + dsy_pz * s.y)};
const float3 dL_dk = cross(l, dL_dp);
const float3 dL_dl = cross(dL_dp, k);
const float3 dL_dTu = {-dL_dk.x, -dL_dk.y, -dL_dk.z};
const float3 dL_dTv = {-dL_dl.x, -dL_dl.y, -dL_dl.z};
const float3 dL_dTw = {
pixf.x * dL_dk.x + pixf.y * dL_dl.x + dL_dz * dz_dTw.x,
pixf.x * dL_dk.y + pixf.y * dL_dl.y + dL_dz * dz_dTw.y,
pixf.x * dL_dk.z + pixf.y * dL_dl.z + dL_dz * dz_dTw.z};
// Update gradients w.r.t. 3D covariance (3x3 matrix)
atomicAdd(&dL_dtransMat[global_id * 9 + 0], dL_dTu.x);
atomicAdd(&dL_dtransMat[global_id * 9 + 1], dL_dTu.y);
atomicAdd(&dL_dtransMat[global_id * 9 + 2], dL_dTu.z);
atomicAdd(&dL_dtransMat[global_id * 9 + 3], dL_dTv.x);
atomicAdd(&dL_dtransMat[global_id * 9 + 4], dL_dTv.y);
atomicAdd(&dL_dtransMat[global_id * 9 + 5], dL_dTv.z);
atomicAdd(&dL_dtransMat[global_id * 9 + 6], dL_dTw.x);
atomicAdd(&dL_dtransMat[global_id * 9 + 7], dL_dTw.y);
atomicAdd(&dL_dtransMat[global_id * 9 + 8], dL_dTw.z);
} else {
// // Update gradients w.r.t. center of Gaussian 2D mean position
const float dG_ddelx = -G * FilterInvSquare * d.x;
const float dG_ddely = -G * FilterInvSquare * d.y;
atomicAdd(&dL_dmean2D[global_id].x, dL_dG * dG_ddelx); // not scaled
atomicAdd(&dL_dmean2D[global_id].y, dL_dG * dG_ddely); // not scaled
// // Propagate the gradients of depth
atomicAdd(&dL_dtransMat[global_id * 9 + 6], s.x * dL_dz);
atomicAdd(&dL_dtransMat[global_id * 9 + 7], s.y * dL_dz);
atomicAdd(&dL_dtransMat[global_id * 9 + 8], dL_dz);
}
// Update gradients w.r.t. opacity of the Gaussian
atomicAdd(&(dL_dopacity[global_id]), G * dL_dalpha);
}
}
}
__device__ void compute_transmat_aabb(
int idx,
const float* Ts_precomp,
const float3* p_origs,
const glm::vec2* scales,
const glm::vec4* rots,
const float* projmatrix,
const float* viewmatrix,
const int W, const int H,
const float3* dL_dnormals,
const float3* dL_dmean2Ds,
float* dL_dTs,
glm::vec3* dL_dmeans,
glm::vec2* dL_dscales,
glm::vec4* dL_drots)
{
glm::mat3 T;
float3 normal;
glm::mat3x4 P;
glm::mat3 R;
glm::mat3 S;
float3 p_orig;
glm::vec4 rot;
glm::vec2 scale;
// Get transformation matrix of the Gaussian
if (Ts_precomp != nullptr) {
T = glm::mat3(
Ts_precomp[idx * 9 + 0], Ts_precomp[idx * 9 + 1], Ts_precomp[idx * 9 + 2],
Ts_precomp[idx * 9 + 3], Ts_precomp[idx * 9 + 4], Ts_precomp[idx * 9 + 5],
Ts_precomp[idx * 9 + 6], Ts_precomp[idx * 9 + 7], Ts_precomp[idx * 9 + 8]
);
normal = {0.0, 0.0, 0.0};
} else {
p_orig = p_origs[idx];
rot = rots[idx];
scale = scales[idx];
R = quat_to_rotmat(rot);
S = scale_to_mat(scale, 1.0f);
glm::mat3 L = R * S;
glm::mat3x4 M = glm::mat3x4(
glm::vec4(L[0], 0.0),
glm::vec4(L[1], 0.0),
glm::vec4(p_orig.x, p_orig.y, p_orig.z, 1)
);
glm::mat4 world2ndc = glm::mat4(
projmatrix[0], projmatrix[4], projmatrix[8], projmatrix[12],
projmatrix[1], projmatrix[5], projmatrix[9], projmatrix[13],
projmatrix[2], projmatrix[6], projmatrix[10], projmatrix[14],
projmatrix[3], projmatrix[7], projmatrix[11], projmatrix[15]
);
glm::mat3x4 ndc2pix = glm::mat3x4(
glm::vec4(float(W) / 2.0, 0.0, 0.0, float(W-1) / 2.0),
glm::vec4(0.0, float(H) / 2.0, 0.0, float(H-1) / 2.0),
glm::vec4(0.0, 0.0, 0.0, 1.0)
);
P = world2ndc * ndc2pix;
T = glm::transpose(M) * P;
normal = transformVec4x3({L[2].x, L[2].y, L[2].z}, viewmatrix);
}
// Update gradients w.r.t. transformation matrix of the Gaussian
glm::mat3 dL_dT = glm::mat3(
dL_dTs[idx*9+0], dL_dTs[idx*9+1], dL_dTs[idx*9+2],
dL_dTs[idx*9+3], dL_dTs[idx*9+4], dL_dTs[idx*9+5],
dL_dTs[idx*9+6], dL_dTs[idx*9+7], dL_dTs[idx*9+8]
);
float3 dL_dmean2D = dL_dmean2Ds[idx];
if(dL_dmean2D.x != 0 || dL_dmean2D.y != 0)
{
glm::vec3 t_vec = glm::vec3(9.0f, 9.0f, -1.0f);
float d = glm::dot(t_vec, T[2] * T[2]);
glm::vec3 f_vec = t_vec * (1.0f / d);
glm::vec3 dL_dT0 = dL_dmean2D.x * f_vec * T[2];
glm::vec3 dL_dT1 = dL_dmean2D.y * f_vec * T[2];
glm::vec3 dL_dT3 = dL_dmean2D.x * f_vec * T[0] + dL_dmean2D.y * f_vec * T[1];
glm::vec3 dL_df = dL_dmean2D.x * T[0] * T[2] + dL_dmean2D.y * T[1] * T[2];
float dL_dd = glm::dot(dL_df, f_vec) * (-1.0 / d);
glm::vec3 dd_dT3 = t_vec * T[2] * 2.0f;
dL_dT3 += dL_dd * dd_dT3;
dL_dT[0] += dL_dT0;
dL_dT[1] += dL_dT1;
dL_dT[2] += dL_dT3;
if (Ts_precomp != nullptr) {
dL_dTs[idx * 9 + 0] = dL_dT[0].x;
dL_dTs[idx * 9 + 1] = dL_dT[0].y;
dL_dTs[idx * 9 + 2] = dL_dT[0].z;
dL_dTs[idx * 9 + 3] = dL_dT[1].x;
dL_dTs[idx * 9 + 4] = dL_dT[1].y;
dL_dTs[idx * 9 + 5] = dL_dT[1].z;
dL_dTs[idx * 9 + 6] = dL_dT[2].x;
dL_dTs[idx * 9 + 7] = dL_dT[2].y;
dL_dTs[idx * 9 + 8] = dL_dT[2].z;
return;
}
}
if (Ts_precomp != nullptr) return;
// Update gradients w.r.t. scaling, rotation, position of the Gaussian
glm::mat3x4 dL_dM = P * glm::transpose(dL_dT);
float3 dL_dtn = transformVec4x3Transpose(dL_dnormals[idx], viewmatrix);
#if DUAL_VISIABLE
float3 p_view = transformPoint4x3(p_orig, viewmatrix);
float cos = -sumf3(p_view * normal);
float multiplier = cos > 0 ? 1: -1;
dL_dtn = multiplier * dL_dtn;
#endif
glm::mat3 dL_dRS = glm::mat3(
glm::vec3(dL_dM[0]),
glm::vec3(dL_dM[1]),
glm::vec3(dL_dtn.x, dL_dtn.y, dL_dtn.z)
);
glm::mat3 dL_dR = glm::mat3(
dL_dRS[0] * glm::vec3(scale.x),
dL_dRS[1] * glm::vec3(scale.y),
dL_dRS[2]);
dL_drots[idx] = quat_to_rotmat_vjp(rot, dL_dR);
dL_dscales[idx] = glm::vec2(
(float)glm::dot(dL_dRS[0], R[0]),
(float)glm::dot(dL_dRS[1], R[1])
);
dL_dmeans[idx] = glm::vec3(dL_dM[2]);
}
template<int C>
__global__ void preprocessCUDA(
int P, int D, int M,
const float3* means3D,
const float* transMats,
const int* radii,
const float* shs,
const bool* clamped,
const glm::vec2* scales,
const glm::vec4* rotations,
const float scale_modifier,
const float* viewmatrix,
const float* projmatrix,
const float focal_x,
const float focal_y,
const float tan_fovx,
const float tan_fovy,
const glm::vec3* campos,
// grad input
float* dL_dtransMats,
const float* dL_dnormal3Ds,
float* dL_dcolors,
float* dL_dshs,
float3* dL_dmean2Ds,
glm::vec3* dL_dmean3Ds,
glm::vec2* dL_dscales,
glm::vec4* dL_drots)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P || !(radii[idx] > 0))
return;
const int W = int(focal_x * tan_fovx * 2);
const int H = int(focal_y * tan_fovy * 2);
const float * Ts_precomp = (scales) ? nullptr : transMats;
compute_transmat_aabb(
idx,
Ts_precomp,
means3D, scales, rotations,
projmatrix, viewmatrix, W, H,
(float3*)dL_dnormal3Ds,
dL_dmean2Ds,
(dL_dtransMats),
dL_dmean3Ds,
dL_dscales,
dL_drots
);
if (shs)
computeColorFromSH(idx, D, M, (glm::vec3*)means3D, *campos, shs, clamped, (glm::vec3*)dL_dcolors, (glm::vec3*)dL_dmean3Ds, (glm::vec3*)dL_dshs);
// hack the gradient here for densitification
float depth = transMats[idx * 9 + 8];
dL_dmean2Ds[idx].x = dL_dtransMats[idx * 9 + 2] * depth * 0.5 * float(W); // to ndc
dL_dmean2Ds[idx].y = dL_dtransMats[idx * 9 + 5] * depth * 0.5 * float(H); // to ndc
}
void BACKWARD::preprocess(
int P, int D, int M,
const float3* means3D,
const int* radii,
const float* shs,
const bool* clamped,
const glm::vec2* scales,
const glm::vec4* rotations,
const float scale_modifier,
const float* transMats,
const float* viewmatrix,
const float* projmatrix,
const float focal_x, const float focal_y,
const float tan_fovx, const float tan_fovy,
const glm::vec3* campos,
float3* dL_dmean2Ds,
const float* dL_dnormal3Ds,
float* dL_dtransMats,
float* dL_dcolors,
float* dL_dshs,
glm::vec3* dL_dmean3Ds,
glm::vec2* dL_dscales,
glm::vec4* dL_drots)
{
preprocessCUDA<NUM_CHANNELS><< <(P + 255) / 256, 256 >> > (
P, D, M,
(float3*)means3D,
transMats,
radii,
shs,
clamped,
(glm::vec2*)scales,
(glm::vec4*)rotations,
scale_modifier,
viewmatrix,
projmatrix,
focal_x,
focal_y,
tan_fovx,
tan_fovy,
campos,
dL_dtransMats,
dL_dnormal3Ds,
dL_dcolors,
dL_dshs,
dL_dmean2Ds,
dL_dmean3Ds,
dL_dscales,
dL_drots
);
}
void BACKWARD::render(
const dim3 grid, const dim3 block,
const uint2* ranges,
const uint32_t* point_list,
int W, int H,
float focal_x, float focal_y,
const float* bg_color,
const float2* means2D,
const float4* normal_opacity,
const float* colors,
const float* transMats,
const float* depths,
const float* final_Ts,
const uint32_t* n_contrib,
const float* dL_dpixels,
const float* dL_depths,
float * dL_dtransMat,
float3* dL_dmean2D,
float* dL_dnormal3D,
float* dL_dopacity,
float* dL_dcolors)
{
renderCUDA<NUM_CHANNELS> << <grid, block >> >(
ranges,
point_list,
W, H,
focal_x, focal_y,
bg_color,
means2D,
normal_opacity,
transMats,
colors,
depths,
final_Ts,
n_contrib,
dL_dpixels,
dL_depths,
dL_dtransMat,
dL_dmean2D,
dL_dnormal3D,
dL_dopacity,
dL_dcolors
);
}
|