Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,637 Bytes
fc6af43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
/*
* Copyright (C) 2023, Inria
* GRAPHDECO research group, https://team.inria.fr/graphdeco
* All rights reserved.
*
* This software is free for non-commercial, research and evaluation use
* under the terms of the LICENSE.md file.
*
* For inquiries contact george.drettakis@inria.fr
*/
#include "forward.h"
#include "auxiliary.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;
// Forward method for converting the input spherical harmonics
// coefficients of each Gaussian to a simple RGB color.
__device__ glm::vec3 computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3* means, glm::vec3 campos, const float* shs, bool* clamped)
{
// The implementation is loosely based on code for
// "Differentiable Point-Based Radiance Fields for
// Efficient View Synthesis" by Zhang et al. (2022)
glm::vec3 pos = means[idx];
glm::vec3 dir = pos - campos;
dir = dir / glm::length(dir);
glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs;
glm::vec3 result = SH_C0 * sh[0];
if (deg > 0)
{
float x = dir.x;
float y = dir.y;
float z = dir.z;
result = result - SH_C1 * y * sh[1] + SH_C1 * z * sh[2] - SH_C1 * x * sh[3];
if (deg > 1)
{
float xx = x * x, yy = y * y, zz = z * z;
float xy = x * y, yz = y * z, xz = x * z;
result = result +
SH_C2[0] * xy * sh[4] +
SH_C2[1] * yz * sh[5] +
SH_C2[2] * (2.0f * zz - xx - yy) * sh[6] +
SH_C2[3] * xz * sh[7] +
SH_C2[4] * (xx - yy) * sh[8];
if (deg > 2)
{
result = result +
SH_C3[0] * y * (3.0f * xx - yy) * sh[9] +
SH_C3[1] * xy * z * sh[10] +
SH_C3[2] * y * (4.0f * zz - xx - yy) * sh[11] +
SH_C3[3] * z * (2.0f * zz - 3.0f * xx - 3.0f * yy) * sh[12] +
SH_C3[4] * x * (4.0f * zz - xx - yy) * sh[13] +
SH_C3[5] * z * (xx - yy) * sh[14] +
SH_C3[6] * x * (xx - 3.0f * yy) * sh[15];
}
}
}
result += 0.5f;
// RGB colors are clamped to positive values. If values are
// clamped, we need to keep track of this for the backward pass.
clamped[3 * idx + 0] = (result.x < 0);
clamped[3 * idx + 1] = (result.y < 0);
clamped[3 * idx + 2] = (result.z < 0);
return glm::max(result, 0.0f);
}
// Compute a 2D-to-2D mapping matrix from a tangent plane into a image plane
// given a 2D gaussian parameters.
__device__ void compute_transmat(
const float3& p_orig,
const glm::vec2 scale,
float mod,
const glm::vec4 rot,
const float* projmatrix,
const float* viewmatrix,
const int W,
const int H,
glm::mat3 &T,
float3 &normal
) {
glm::mat3 R = quat_to_rotmat(rot);
glm::mat3 S = scale_to_mat(scale, mod);
glm::mat3 L = R * S;
// center of Gaussians in the camera coordinate
glm::mat3x4 splat2world = glm::mat3x4(
glm::vec4(L[0], 0.0),
glm::vec4(L[1], 0.0),
glm::vec4(p_orig.x, p_orig.y, p_orig.z, 1)
);
glm::mat4 world2ndc = glm::mat4(
projmatrix[0], projmatrix[4], projmatrix[8], projmatrix[12],
projmatrix[1], projmatrix[5], projmatrix[9], projmatrix[13],
projmatrix[2], projmatrix[6], projmatrix[10], projmatrix[14],
projmatrix[3], projmatrix[7], projmatrix[11], projmatrix[15]
);
glm::mat3x4 ndc2pix = glm::mat3x4(
glm::vec4(float(W) / 2.0, 0.0, 0.0, float(W-1) / 2.0),
glm::vec4(0.0, float(H) / 2.0, 0.0, float(H-1) / 2.0),
glm::vec4(0.0, 0.0, 0.0, 1.0)
);
T = glm::transpose(splat2world) * world2ndc * ndc2pix;
normal = transformVec4x3({L[2].x, L[2].y, L[2].z}, viewmatrix);
}
// Computing the bounding box of the 2D Gaussian and its center
// The center of the bounding box is used to create a low pass filter
__device__ bool compute_aabb(
glm::mat3 T,
float cutoff,
float2& point_image,
float2& extent
) {
glm::vec3 t = glm::vec3(cutoff * cutoff, cutoff * cutoff, -1.0f);
float d = glm::dot(t, T[2] * T[2]);
if (d == 0.0) return false;
glm::vec3 f = (1 / d) * t;
glm::vec2 p = glm::vec2(
glm::dot(f, T[0] * T[2]),
glm::dot(f, T[1] * T[2])
);
glm::vec2 h0 = p * p -
glm::vec2(
glm::dot(f, T[0] * T[0]),
glm::dot(f, T[1] * T[1])
);
glm::vec2 h = sqrt(max(glm::vec2(1e-4, 1e-4), h0));
point_image = {p.x, p.y};
extent = {h.x, h.y};
return true;
}
// Perform initial steps for each Gaussian prior to rasterization.
template<int C>
__global__ void preprocessCUDA(int P, int D, int M,
const float* orig_points,
const glm::vec2* scales,
const float scale_modifier,
const glm::vec4* rotations,
const float* opacities,
const float* shs,
bool* clamped,
const float* transMat_precomp,
const float* colors_precomp,
const float* viewmatrix,
const float* projmatrix,
const glm::vec3* cam_pos,
const int W, int H,
const float tan_fovx, const float tan_fovy,
const float focal_x, const float focal_y,
int* radii,
float2* points_xy_image,
float* depths,
float* transMats,
float* rgb,
float4* normal_opacity,
const dim3 grid,
uint32_t* tiles_touched,
bool prefiltered)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
// Initialize radius and touched tiles to 0. If this isn't changed,
// this Gaussian will not be processed further.
radii[idx] = 0;
tiles_touched[idx] = 0;
// Perform near culling, quit if outside.
float3 p_view;
if (!in_frustum(idx, orig_points, viewmatrix, projmatrix, prefiltered, p_view))
return;
// Compute transformation matrix
glm::mat3 T;
float3 normal;
if (transMat_precomp == nullptr)
{
compute_transmat(((float3*)orig_points)[idx], scales[idx], scale_modifier, rotations[idx], projmatrix, viewmatrix, W, H, T, normal);
float3 *T_ptr = (float3*)transMats;
T_ptr[idx * 3 + 0] = {T[0][0], T[0][1], T[0][2]};
T_ptr[idx * 3 + 1] = {T[1][0], T[1][1], T[1][2]};
T_ptr[idx * 3 + 2] = {T[2][0], T[2][1], T[2][2]};
} else {
glm::vec3 *T_ptr = (glm::vec3*)transMat_precomp;
T = glm::mat3(
T_ptr[idx * 3 + 0],
T_ptr[idx * 3 + 1],
T_ptr[idx * 3 + 2]
);
normal = make_float3(0.0, 0.0, 1.0);
}
#if DUAL_VISIABLE
float cos = -sumf3(p_view * normal);
if (cos == 0) return;
float multiplier = cos > 0 ? 1: -1;
normal = multiplier * normal;
#endif
#if TIGHTBBOX // no use in the paper, but it indeed help speeds.
// the effective extent is now depended on the opacity of gaussian.
float cutoff = sqrtf(max(9.f + 2.f * logf(opacities[idx]), 0.000001));
#else
float cutoff = 3.0f;
#endif
// Compute center and radius
float2 point_image;
float radius;
{
float2 extent;
bool ok = compute_aabb(T, cutoff, point_image, extent);
if (!ok) return;
radius = ceil(max(max(extent.x, extent.y), cutoff * FilterSize));
}
uint2 rect_min, rect_max;
getRect(point_image, radius, rect_min, rect_max, grid);
if ((rect_max.x - rect_min.x) * (rect_max.y - rect_min.y) == 0)
return;
// Compute colors
if (colors_precomp == nullptr) {
glm::vec3 result = computeColorFromSH(idx, D, M, (glm::vec3*)orig_points, *cam_pos, shs, clamped);
rgb[idx * C + 0] = result.x;
rgb[idx * C + 1] = result.y;
rgb[idx * C + 2] = result.z;
}
depths[idx] = p_view.z;
radii[idx] = (int)radius;
points_xy_image[idx] = point_image;
normal_opacity[idx] = {normal.x, normal.y, normal.z, opacities[idx]};
tiles_touched[idx] = (rect_max.y - rect_min.y) * (rect_max.x - rect_min.x);
}
// Main rasterization method. Collaboratively works on one tile per
// block, each thread treats one pixel. Alternates between fetching
// and rasterizing data.
template <uint32_t CHANNELS>
__global__ void __launch_bounds__(BLOCK_X * BLOCK_Y)
renderCUDA(
const uint2* __restrict__ ranges,
const uint32_t* __restrict__ point_list,
int W, int H,
float focal_x, float focal_y,
const float2* __restrict__ points_xy_image,
const float* __restrict__ features,
const float* __restrict__ transMats,
const float* __restrict__ depths,
const float4* __restrict__ normal_opacity,
float* __restrict__ final_T,
uint32_t* __restrict__ n_contrib,
const float* __restrict__ bg_color,
float* __restrict__ out_color,
float* __restrict__ out_others)
{
// Identify current tile and associated min/max pixel range.
auto block = cg::this_thread_block();
uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X;
uint2 pix_min = { block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y };
uint2 pix_max = { min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y , H) };
uint2 pix = { pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y };
uint32_t pix_id = W * pix.y + pix.x;
float2 pixf = { (float)pix.x, (float)pix.y};
// Check if this thread is associated with a valid pixel or outside.
bool inside = pix.x < W&& pix.y < H;
// Done threads can help with fetching, but don't rasterize
bool done = !inside;
// Load start/end range of IDs to process in bit sorted list.
uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x];
const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE);
int toDo = range.y - range.x;
// Allocate storage for batches of collectively fetched data.
__shared__ int collected_id[BLOCK_SIZE];
__shared__ float2 collected_xy[BLOCK_SIZE];
__shared__ float4 collected_normal_opacity[BLOCK_SIZE];
__shared__ float3 collected_Tu[BLOCK_SIZE];
__shared__ float3 collected_Tv[BLOCK_SIZE];
__shared__ float3 collected_Tw[BLOCK_SIZE];
// Initialize helper variables
float T = 1.0f;
uint32_t contributor = 0;
uint32_t last_contributor = 0;
float C[CHANNELS] = { 0 };
#if RENDER_AXUTILITY
// render axutility ouput
float N[3] = {0};
float D = { 0 };
float M1 = {0};
float M2 = {0};
float distortion = {0};
float median_depth = {0};
// float median_weight = {0};
float median_contributor = {-1};
#endif
// Iterate over batches until all done or range is complete
for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE)
{
// End if entire block votes that it is done rasterizing
int num_done = __syncthreads_count(done);
if (num_done == BLOCK_SIZE)
break;
// Collectively fetch per-Gaussian data from global to shared
int progress = i * BLOCK_SIZE + block.thread_rank();
if (range.x + progress < range.y)
{
int coll_id = point_list[range.x + progress];
collected_id[block.thread_rank()] = coll_id;
collected_xy[block.thread_rank()] = points_xy_image[coll_id];
collected_normal_opacity[block.thread_rank()] = normal_opacity[coll_id];
collected_Tu[block.thread_rank()] = {transMats[9 * coll_id+0], transMats[9 * coll_id+1], transMats[9 * coll_id+2]};
collected_Tv[block.thread_rank()] = {transMats[9 * coll_id+3], transMats[9 * coll_id+4], transMats[9 * coll_id+5]};
collected_Tw[block.thread_rank()] = {transMats[9 * coll_id+6], transMats[9 * coll_id+7], transMats[9 * coll_id+8]};
}
block.sync();
// Iterate over current batch
for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++)
{
// Keep track of current position in range
contributor++;
// Fisrt compute two homogeneous planes, See Eq. (8)
const float2 xy = collected_xy[j];
const float3 Tu = collected_Tu[j];
const float3 Tv = collected_Tv[j];
const float3 Tw = collected_Tw[j];
// Transform the two planes into local u-v system.
float3 k = pix.x * Tw - Tu;
float3 l = pix.y * Tw - Tv;
// Cross product of two planes is a line, Eq. (9)
float3 p = cross(k, l);
if (p.z == 0.0) continue;
// Perspective division to get the intersection (u,v), Eq. (10)
float2 s = {p.x / p.z, p.y / p.z};
float rho3d = (s.x * s.x + s.y * s.y);
// Add low pass filter
float2 d = {xy.x - pixf.x, xy.y - pixf.y};
float rho2d = FilterInvSquare * (d.x * d.x + d.y * d.y);
float rho = min(rho3d, rho2d);
// compute depth
float depth = (s.x * Tw.x + s.y * Tw.y) + Tw.z;
// if a point is too small, its depth is not reliable?
// depth = (rho3d <= rho2d) ? depth : Tw.z
if (depth < near_n) continue;
float4 nor_o = collected_normal_opacity[j];
float normal[3] = {nor_o.x, nor_o.y, nor_o.z};
float opa = nor_o.w;
float power = -0.5f * rho;
if (power > 0.0f)
continue;
// Eq. (2) from 3D Gaussian splatting paper.
// Obtain alpha by multiplying with Gaussian opacity
// and its exponential falloff from mean.
// Avoid numerical instabilities (see paper appendix).
float alpha = min(0.99f, opa * exp(power));
if (alpha < 1.0f / 255.0f)
continue;
float test_T = T * (1 - alpha);
if (test_T < 0.0001f)
{
done = true;
continue;
}
float w = alpha * T;
#if RENDER_AXUTILITY
// Render depth distortion map
// Efficient implementation of distortion loss, see 2DGS' paper appendix.
float A = 1-T;
float m = far_n / (far_n - near_n) * (1 - near_n / depth);
distortion += (m * m * A + M2 - 2 * m * M1) * w;
D += depth * w;
M1 += m * w;
M2 += m * m * w;
if (T > 0.5) {
median_depth = depth;
// median_weight = w;
median_contributor = contributor;
}
// Render normal map
for (int ch=0; ch<3; ch++) N[ch] += normal[ch] * w;
#endif
// Eq. (3) from 3D Gaussian splatting paper.
for (int ch = 0; ch < CHANNELS; ch++)
C[ch] += features[collected_id[j] * CHANNELS + ch] * w;
T = test_T;
// Keep track of last range entry to update this
// pixel.
last_contributor = contributor;
}
}
// All threads that treat valid pixel write out their final
// rendering data to the frame and auxiliary buffers.
if (inside)
{
final_T[pix_id] = T;
n_contrib[pix_id] = last_contributor;
for (int ch = 0; ch < CHANNELS; ch++)
out_color[ch * H * W + pix_id] = C[ch] + T * bg_color[ch];
#if RENDER_AXUTILITY
n_contrib[pix_id + H * W] = median_contributor;
final_T[pix_id + H * W] = M1;
final_T[pix_id + 2 * H * W] = M2;
out_others[pix_id + DEPTH_OFFSET * H * W] = D;
out_others[pix_id + ALPHA_OFFSET * H * W] = 1 - T;
for (int ch=0; ch<3; ch++) out_others[pix_id + (NORMAL_OFFSET+ch) * H * W] = N[ch];
out_others[pix_id + MIDDEPTH_OFFSET * H * W] = median_depth;
out_others[pix_id + DISTORTION_OFFSET * H * W] = distortion;
// out_others[pix_id + MEDIAN_WEIGHT_OFFSET * H * W] = median_weight;
#endif
}
}
void FORWARD::render(
const dim3 grid, dim3 block,
const uint2* ranges,
const uint32_t* point_list,
int W, int H,
float focal_x, float focal_y,
const float2* means2D,
const float* colors,
const float* transMats,
const float* depths,
const float4* normal_opacity,
float* final_T,
uint32_t* n_contrib,
const float* bg_color,
float* out_color,
float* out_others)
{
renderCUDA<NUM_CHANNELS> << <grid, block >> > (
ranges,
point_list,
W, H,
focal_x, focal_y,
means2D,
colors,
transMats,
depths,
normal_opacity,
final_T,
n_contrib,
bg_color,
out_color,
out_others);
}
void FORWARD::preprocess(int P, int D, int M,
const float* means3D,
const glm::vec2* scales,
const float scale_modifier,
const glm::vec4* rotations,
const float* opacities,
const float* shs,
bool* clamped,
const float* transMat_precomp,
const float* colors_precomp,
const float* viewmatrix,
const float* projmatrix,
const glm::vec3* cam_pos,
const int W, const int H,
const float focal_x, const float focal_y,
const float tan_fovx, const float tan_fovy,
int* radii,
float2* means2D,
float* depths,
float* transMats,
float* rgb,
float4* normal_opacity,
const dim3 grid,
uint32_t* tiles_touched,
bool prefiltered)
{
preprocessCUDA<NUM_CHANNELS> << <(P + 255) / 256, 256 >> > (
P, D, M,
means3D,
scales,
scale_modifier,
rotations,
opacities,
shs,
clamped,
transMat_precomp,
colors_precomp,
viewmatrix,
projmatrix,
cam_pos,
W, H,
tan_fovx, tan_fovy,
focal_x, focal_y,
radii,
means2D,
depths,
transMats,
rgb,
normal_opacity,
grid,
tiles_touched,
prefiltered
);
}
|