Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,864 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
// EMD approximation module (based on auction algorithm)
// author: Minghua Liu
#include <stdio.h>
#include <ATen/ATen.h>
#include <cuda.h>
#include <iostream>
#include <cuda_runtime.h>
__device__ __forceinline__ float atomicMax(float *address, float val)
{
int ret = __float_as_int(*address);
while(val > __int_as_float(ret))
{
int old = ret;
if((ret = atomicCAS((int *)address, old, __float_as_int(val))) == old)
break;
}
return __int_as_float(ret);
}
__global__ void clear(int b, int * cnt_tmp, int * unass_cnt) {
for (int i = threadIdx.x; i < b; i += blockDim.x) {
cnt_tmp[i] = 0;
unass_cnt[i] = 0;
}
}
__global__ void calc_unass_cnt(int b, int n, int * assignment, int * unass_cnt) {
// count the number of unassigned points in each batch
const int BLOCK_SIZE = 1024;
__shared__ int scan_array[BLOCK_SIZE];
for (int i = blockIdx.x; i < b; i += gridDim.x) {
scan_array[threadIdx.x] = assignment[i * n + blockIdx.y * BLOCK_SIZE + threadIdx.x] == -1 ? 1 : 0;
__syncthreads();
int stride = 1;
while(stride <= BLOCK_SIZE / 2) {
int index = (threadIdx.x + 1) * stride * 2 - 1;
if(index < BLOCK_SIZE)
scan_array[index] += scan_array[index - stride];
stride = stride * 2;
__syncthreads();
}
__syncthreads();
if (threadIdx.x == BLOCK_SIZE - 1) {
atomicAdd(&unass_cnt[i], scan_array[threadIdx.x]);
}
__syncthreads();
}
}
__global__ void calc_unass_cnt_sum(int b, int * unass_cnt, int * unass_cnt_sum) {
// count the cumulative sum over over unass_cnt
const int BLOCK_SIZE = 512; // batch_size <= 512
__shared__ int scan_array[BLOCK_SIZE];
scan_array[threadIdx.x] = unass_cnt[threadIdx.x];
__syncthreads();
int stride = 1;
while(stride <= BLOCK_SIZE / 2) {
int index = (threadIdx.x + 1) * stride * 2 - 1;
if(index < BLOCK_SIZE)
scan_array[index] += scan_array[index - stride];
stride = stride * 2;
__syncthreads();
}
__syncthreads();
stride = BLOCK_SIZE / 4;
while(stride > 0) {
int index = (threadIdx.x + 1) * stride * 2 - 1;
if((index + stride) < BLOCK_SIZE)
scan_array[index + stride] += scan_array[index];
stride = stride / 2;
__syncthreads();
}
__syncthreads();
//printf("%d\n", unass_cnt_sum[b - 1]);
unass_cnt_sum[threadIdx.x] = scan_array[threadIdx.x];
}
__global__ void calc_unass_idx(int b, int n, int * assignment, int * unass_idx, int * unass_cnt, int * unass_cnt_sum, int * cnt_tmp) {
// list all the unassigned points
for (int i = blockIdx.x; i < b; i += gridDim.x) {
if (assignment[i * n + blockIdx.y * 1024 + threadIdx.x] == -1) {
int idx = atomicAdd(&cnt_tmp[i], 1);
unass_idx[unass_cnt_sum[i] - unass_cnt[i] + idx] = blockIdx.y * 1024 + threadIdx.x;
}
}
}
__global__ void Bid(int b, int n, const float * xyz1, const float * xyz2, float eps, int * assignment, int * assignment_inv, float * price,
int * bid, float * bid_increments, float * max_increments, int * unass_cnt, int * unass_cnt_sum, int * unass_idx) {
const int batch = 2048, block_size = 1024, block_cnt = n / 1024;
__shared__ float xyz2_buf[batch * 3];
__shared__ float price_buf[batch];
__shared__ float best_buf[block_size];
__shared__ float better_buf[block_size];
__shared__ int best_i_buf[block_size];
for (int i = blockIdx.x; i < b; i += gridDim.x) {
int _unass_cnt = unass_cnt[i];
if (_unass_cnt == 0)
continue;
int _unass_cnt_sum = unass_cnt_sum[i];
int unass_per_block = (_unass_cnt + block_cnt - 1) / block_cnt;
int thread_per_unass = block_size / unass_per_block;
int unass_this_block = max(min(_unass_cnt - (int) blockIdx.y * unass_per_block, unass_per_block), 0);
float x1, y1, z1, best = -1e9, better = -1e9;
int best_i = -1, _unass_id = -1, thread_in_unass;
if (threadIdx.x < thread_per_unass * unass_this_block) {
_unass_id = unass_per_block * blockIdx.y + threadIdx.x / thread_per_unass + _unass_cnt_sum - _unass_cnt;
_unass_id = unass_idx[_unass_id];
thread_in_unass = threadIdx.x % thread_per_unass;
x1 = xyz1[(i * n + _unass_id) * 3 + 0];
y1 = xyz1[(i * n + _unass_id) * 3 + 1];
z1 = xyz1[(i * n + _unass_id) * 3 + 2];
}
for (int k2 = 0; k2 < n; k2 += batch) {
int end_k = min(n, k2 + batch) - k2;
for (int j = threadIdx.x; j < end_k * 3; j += blockDim.x) {
xyz2_buf[j] = xyz2[(i * n + k2) * 3 + j];
}
for (int j = threadIdx.x; j < end_k; j += blockDim.x) {
price_buf[j] = price[i * n + k2 + j];
}
__syncthreads();
if (_unass_id != -1) {
int delta = (end_k + thread_per_unass - 1) / thread_per_unass;
int l = thread_in_unass * delta;
int r = min((thread_in_unass + 1) * delta, end_k);
for (int k = l; k < r; k++)
//if (!last || assignment_inv[i * n + k + k2] == -1)
{
float x2 = xyz2_buf[k * 3 + 0] - x1;
float y2 = xyz2_buf[k * 3 + 1] - y1;
float z2 = xyz2_buf[k * 3 + 2] - z1;
// the coordinates of points should be normalized to [0, 1]
float d = 3.0 - sqrtf(x2 * x2 + y2 * y2 + z2 * z2) - price_buf[k];
if (d > best) {
better = best;
best = d;
best_i = k + k2;
}
else if (d > better) {
better = d;
}
}
}
__syncthreads();
}
best_buf[threadIdx.x] = best;
better_buf[threadIdx.x] = better;
best_i_buf[threadIdx.x] = best_i;
__syncthreads();
if (_unass_id != -1 && thread_in_unass == 0) {
for (int j = threadIdx.x + 1; j < threadIdx.x + thread_per_unass; j++) {
if (best_buf[j] > best) {
better = max(best, better_buf[j]);
best = best_buf[j];
best_i = best_i_buf[j];
}
else better = max(better, best_buf[j]);
}
bid[i * n + _unass_id] = best_i;
bid_increments[i * n + _unass_id] = best - better + eps;
atomicMax(&max_increments[i * n + best_i], best - better + eps);
}
}
}
__global__ void GetMax(int b, int n, int * assignment, int * bid, float * bid_increments, float * max_increments, int * max_idx) {
for (int i = blockIdx.x; i < b; i += gridDim.x) {
int j = threadIdx.x + blockIdx.y * blockDim.x;
if (assignment[i * n + j] == -1) {
int bid_id = bid[i * n + j];
float bid_inc = bid_increments[i * n + j];
float max_inc = max_increments[i * n + bid_id];
if (bid_inc - 1e-6 <= max_inc && max_inc <= bid_inc + 1e-6)
{
max_idx[i * n + bid_id] = j;
}
}
}
}
__global__ void Assign(int b, int n, int * assignment, int * assignment_inv, float * price, int * bid, float * bid_increments, float * max_increments, int * max_idx, bool last) {
for (int i = blockIdx.x; i < b; i += gridDim.x) {
int j = threadIdx.x + blockIdx.y * blockDim.x;
if (assignment[i * n + j] == -1) {
int bid_id = bid[i * n + j];
if (last || max_idx[i * n + bid_id] == j)
{
float bid_inc = bid_increments[i * n + j];
int ass_inv = assignment_inv[i * n + bid_id];
if (!last && ass_inv != -1) {
assignment[i * n + ass_inv] = -1;
}
assignment_inv[i * n + bid_id] = j;
assignment[i * n + j] = bid_id;
price[i * n + bid_id] += bid_inc;
max_increments[i * n + bid_id] = -1e9;
}
}
}
}
__global__ void CalcDist(int b, int n, float * xyz1, float * xyz2, float * dist, int * assignment) {
for (int i = blockIdx.x; i < b; i += gridDim.x) {
int j = threadIdx.x + blockIdx.y * blockDim.x;
int k = assignment[i * n + j];
float deltax = xyz1[(i * n + j) * 3 + 0] - xyz2[(i * n + k) * 3 + 0];
float deltay = xyz1[(i * n + j) * 3 + 1] - xyz2[(i * n + k) * 3 + 1];
float deltaz = xyz1[(i * n + j) * 3 + 2] - xyz2[(i * n + k) * 3 + 2];
dist[i * n + j] = deltax * deltax + deltay * deltay + deltaz * deltaz;
}
}
int emd_cuda_forward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor dist, at::Tensor assignment, at::Tensor price,
at::Tensor assignment_inv, at::Tensor bid, at::Tensor bid_increments, at::Tensor max_increments,
at::Tensor unass_idx, at::Tensor unass_cnt, at::Tensor unass_cnt_sum, at::Tensor cnt_tmp, at::Tensor max_idx, float eps, int iters) {
const auto batch_size = xyz1.size(0);
const auto n = xyz1.size(1); //num_points point cloud A
const auto m = xyz2.size(1); //num_points point cloud B
if (n != m) {
printf("Input Error! The two point clouds should have the same size.\n");
return -1;
}
if (batch_size > 512) {
printf("Input Error! The batch size should be less than 512.\n");
return -1;
}
if (n % 1024 != 0) {
printf("Input Error! The size of the point clouds should be a multiple of 1024.\n");
return -1;
}
//cudaEvent_t start,stop;
//cudaEventCreate(&start);
//cudaEventCreate(&stop);
//cudaEventRecord(start);
//int iters = 50;
for (int i = 0; i < iters; i++) {
clear<<<1, batch_size>>>(batch_size, cnt_tmp.data<int>(), unass_cnt.data<int>());
calc_unass_cnt<<<dim3(batch_size, n / 1024, 1), 1024>>>(batch_size, n, assignment.data<int>(), unass_cnt.data<int>());
calc_unass_cnt_sum<<<1, batch_size>>>(batch_size, unass_cnt.data<int>(), unass_cnt_sum.data<int>());
calc_unass_idx<<<dim3(batch_size, n / 1024, 1), 1024>>>(batch_size, n, assignment.data<int>(), unass_idx.data<int>(), unass_cnt.data<int>(),
unass_cnt_sum.data<int>(), cnt_tmp.data<int>());
Bid<<<dim3(batch_size, n / 1024, 1), 1024>>>(batch_size, n, xyz1.data<float>(), xyz2.data<float>(), eps, assignment.data<int>(), assignment_inv.data<int>(),
price.data<float>(), bid.data<int>(), bid_increments.data<float>(), max_increments.data<float>(),
unass_cnt.data<int>(), unass_cnt_sum.data<int>(), unass_idx.data<int>());
GetMax<<<dim3(batch_size, n / 1024, 1), 1024>>>(batch_size, n, assignment.data<int>(), bid.data<int>(), bid_increments.data<float>(), max_increments.data<float>(), max_idx.data<int>());
Assign<<<dim3(batch_size, n / 1024, 1), 1024>>>(batch_size, n, assignment.data<int>(), assignment_inv.data<int>(), price.data<float>(), bid.data<int>(),
bid_increments.data<float>(), max_increments.data<float>(), max_idx.data<int>(), i == iters - 1);
}
CalcDist<<<dim3(batch_size, n / 1024, 1), 1024>>>(batch_size, n, xyz1.data<float>(), xyz2.data<float>(), dist.data<float>(), assignment.data<int>());
//cudaEventRecord(stop);
//cudaEventSynchronize(stop);
//float elapsedTime;
//cudaEventElapsedTime(&elapsedTime,start,stop);
//printf("%lf\n", elapsedTime);
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in nnd Output: %s\n", cudaGetErrorString(err));
return 0;
}
return 1;
}
__global__ void NmDistanceGradKernel(int b, int n, const float * xyz1, const float * xyz2, const float * grad_dist, const int * idx, float * grad_xyz){
for (int i = blockIdx.x; i < b; i += gridDim.x) {
for (int j = threadIdx.x + blockIdx.y * blockDim.x; j < n; j += blockDim.x * gridDim.y) {
float x1 = xyz1[(i * n + j) * 3 + 0];
float y1 = xyz1[(i * n + j) * 3 + 1];
float z1 = xyz1[(i * n + j) * 3 + 2];
int j2 = idx[i * n + j];
float x2 = xyz2[(i * n + j2) * 3 + 0];
float y2 = xyz2[(i * n + j2) * 3 + 1];
float z2 = xyz2[(i * n + j2) * 3 + 2];
float g = grad_dist[i * n + j] * 2;
atomicAdd(&(grad_xyz[(i * n + j) * 3 + 0]), g * (x1 - x2));
atomicAdd(&(grad_xyz[(i * n + j) * 3 + 1]), g * (y1 - y2));
atomicAdd(&(grad_xyz[(i * n + j) * 3 + 2]), g * (z1 - z2));
}
}
}
int emd_cuda_backward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor gradxyz, at::Tensor graddist, at::Tensor idx){
const auto batch_size = xyz1.size(0);
const auto n = xyz1.size(1);
const auto m = xyz2.size(1);
NmDistanceGradKernel<<<dim3(batch_size, n / 1024, 1), 1024>>>(batch_size, n, xyz1.data<float>(), xyz2.data<float>(), graddist.data<float>(), idx.data<int>(), gradxyz.data<float>());
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in nnd get grad: %s\n", cudaGetErrorString(err));
return 0;
}
return 1;
}
|