File size: 3,937 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# EMD approximation module (based on auction algorithm)
# memory complexity: O(n)
# time complexity: O(n^2 * iter) 
# author: Minghua Liu

# Input:
# xyz1, xyz2: [#batch, #points, 3]
# where xyz1 is the predicted point cloud and xyz2 is the ground truth point cloud 
# two point clouds should have same size and be normalized to [0, 1]
# #points should be a multiple of 1024
# #batch should be no greater than 512
# eps is a parameter which balances the error rate and the speed of convergence
# iters is the number of iteration
# we only calculate gradient for xyz1

# Output:
# dist: [#batch, #points],  sqrt(dist) -> L2 distance 
# assignment: [#batch, #points], index of the matched point in the ground truth point cloud
# the result is an approximation and the assignment is not guranteed to be a bijection

import time
import numpy as np
import torch
from torch import nn
from torch.autograd import Function
import emd




class emdFunction(Function):
    @staticmethod
    def forward(ctx, xyz1, xyz2, eps, iters):

        batchsize, n, _ = xyz1.size()
        _, m, _ = xyz2.size()

        assert(n == m)
        assert(xyz1.size()[0] == xyz2.size()[0])
        #assert(n % 1024 == 0)
        assert(batchsize <= 512)

        xyz1 = xyz1.contiguous().float().cuda()
        xyz2 = xyz2.contiguous().float().cuda()
        dist = torch.zeros(batchsize, n, device='cuda').contiguous()
        assignment = torch.zeros(batchsize, n, device='cuda', dtype=torch.int32).contiguous() - 1
        assignment_inv = torch.zeros(batchsize, m, device='cuda', dtype=torch.int32).contiguous() - 1
        price = torch.zeros(batchsize, m, device='cuda').contiguous()
        bid = torch.zeros(batchsize, n, device='cuda', dtype=torch.int32).contiguous()
        bid_increments = torch.zeros(batchsize, n, device='cuda').contiguous()
        max_increments = torch.zeros(batchsize, m, device='cuda').contiguous()
        unass_idx = torch.zeros(batchsize * n, device='cuda', dtype=torch.int32).contiguous()
        max_idx = torch.zeros(batchsize * m, device='cuda', dtype=torch.int32).contiguous()
        unass_cnt = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous()
        unass_cnt_sum = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous()
        cnt_tmp = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous()

        emd.forward(xyz1, xyz2, dist, assignment, price, assignment_inv, bid, bid_increments, max_increments, unass_idx, unass_cnt, unass_cnt_sum, cnt_tmp, max_idx, eps, iters)

        ctx.save_for_backward(xyz1, xyz2, assignment)
        return dist, assignment

    @staticmethod
    def backward(ctx, graddist, gradidx):
        xyz1, xyz2, assignment = ctx.saved_tensors
        graddist = graddist.contiguous()

        gradxyz1 = torch.zeros(xyz1.size(), device='cuda').contiguous()
        gradxyz2 = torch.zeros(xyz2.size(), device='cuda').contiguous()

        emd.backward(xyz1, xyz2, gradxyz1, graddist, assignment)
        return gradxyz1, gradxyz2, None, None

class emdModule(nn.Module):
    def __init__(self):
        super(emdModule, self).__init__()

    def forward(self, input1, input2, eps, iters):
        return emdFunction.apply(input1, input2, eps, iters)

def test_emd():
    x1 = torch.rand(20, 8192, 3).cuda()
    x2 = torch.rand(20, 8192, 3).cuda()
    emd = emdModule()
    start_time = time.perf_counter()
    dis, assigment = emd(x1, x2, 0.05, 3000)
    # print(dis.shape) # B N
    print("Input_size: ", x1.shape)
    print("Runtime: %lfs" % (time.perf_counter() - start_time))
    print("EMD: %lf" % np.sqrt(dis.cpu()).mean())
    print("|set(assignment)|: %d" % assigment.unique().numel())
    assigment = assigment.cpu().numpy()
    assigment = np.expand_dims(assigment, -1)
    x2 = np.take_along_axis(x2, assigment, axis = 1)
    d = (x1 - x2) * (x1 - x2)
    print("Verified EMD: %lf" % np.sqrt(d.cpu().sum(-1)).mean())

# test_emd()