Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,309 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import torch
import torch.nn as nn
import numpy as np
import math
from pdb import set_trace as st
from .dit_models import DiT, DiTBlock, DiT_models, get_2d_sincos_pos_embed
class DiT_Triplane_V1(DiT):
"""
1. merge the 3*H*W as L, and 8 as C only
2. pachify, flat into 224*(224*3) with 8 channels for pachify
3. unpachify accordingly
"""
def __init__(self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4,
class_dropout_prob=0.1,
num_classes=1000,
learn_sigma=False):
input_size = (input_size, input_size*3)
super().__init__(input_size, patch_size, in_channels//3, hidden_size, # type: ignore
depth, num_heads, mlp_ratio, class_dropout_prob,
num_classes, learn_sigma)
def initialize_weights(self):
"""all the same except the PE part
"""
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize (and freeze) pos_embed by sin-cos embedding:
pos_embed = get_2d_sincos_pos_embed(
self.pos_embed.shape[-1], self.x_embedder.grid_size)
# st()
self.pos_embed.data.copy_(
torch.from_numpy(pos_embed).float().unsqueeze(0))
# ! untouched below
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
# Initialize label embedding table:
if self.y_embedder is not None:
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def unpatchify(self, x):
# TODO
"""
x: (N, L, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0] # type: ignore
h = w = int((x.shape[1]//3)**0.5)
assert h * w * 3 == x.shape[1] # merge triplane 3 dims with hw
x = x.reshape(shape=(x.shape[0], h, w, 3, p, p, c))
x = torch.einsum('nhwzpqc->nczhpwq', x)
imgs = x.reshape(shape=(x.shape[0], c*3, h * p, h * p)) # type: ignore
return imgs # B 8*3 H W
def forward(self, x, t, y=None):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
# ! merge tri-channel into w chanenl for 3D-aware TX
x = x.reshape(x.shape[0], -1, 3, x.shape[2], x.shape[3]) # B 8 3 H W
x = x.permute(0,1,3,4,2).reshape(x.shape[0], -1, x.shape[-2], x.shape[-1]*3) # B 8 H W83
x = self.x_embedder(
x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(t) # (N, D)
if self.y_embedder is not None:
assert y is not None
y = self.y_embedder(y, self.training) # (N, D)
c = t + y # (N, D)
else:
c = t
for block in self.blocks:
x = block(x, c) # (N, T, D)
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
class DiT_Triplane_V1_learnedPE(DiT_Triplane_V1):
"""
1. learned PE, default cos/sin wave
"""
def __init__(self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4,
class_dropout_prob=0.1,
num_classes=1000,
learn_sigma=True):
super().__init__(input_size, patch_size, in_channels, hidden_size,
depth, num_heads, mlp_ratio, class_dropout_prob,
num_classes, learn_sigma)
class DiT_Triplane_V1_fixed3DPE(DiT_Triplane_V1):
"""
1. 3D aware PE, fixed
"""
def __init__(self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4,
class_dropout_prob=0.1,
num_classes=1000,
learn_sigma=True):
super().__init__(input_size, patch_size, in_channels, hidden_size,
depth, num_heads, mlp_ratio, class_dropout_prob,
num_classes, learn_sigma)
class DiT_Triplane_V1_learned3DPE(DiT_Triplane_V1):
"""
1. init with 3D aware PE, learnable
"""
def __init__(self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4,
class_dropout_prob=0.1,
num_classes=1000,
learn_sigma=True):
super().__init__(input_size, patch_size, in_channels, hidden_size,
depth, num_heads, mlp_ratio, class_dropout_prob,
num_classes, learn_sigma)
def V1_Triplane_DiT_S_2(**kwargs):
return DiT_Triplane_V1(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)
def V1_Triplane_DiT_S_4(**kwargs):
return DiT_Triplane_V1(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)
def V1_Triplane_DiT_S_8(**kwargs):
return DiT_Triplane_V1(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)
def V1_Triplane_DiT_B_8(**kwargs):
return DiT_Triplane_V1(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)
def V1_Triplane_DiT_B_16(**kwargs): # ours cfg
return DiT_Triplane_V1(depth=12, hidden_size=768, patch_size=16, num_heads=12, **kwargs)
DiT_models.update({
'v1-T-DiT-S/2': V1_Triplane_DiT_S_2,
'v1-T-DiT-S/4': V1_Triplane_DiT_S_4,
'v1-T-DiT-S/8': V1_Triplane_DiT_S_8,
'v1-T-DiT-B/8': V1_Triplane_DiT_B_8,
'v1-T-DiT-B/16': V1_Triplane_DiT_B_16,
}) |