File size: 56,985 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8855d72
 
 
 
 
 
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
# https://github.com/facebookresearch/DiT

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------

import torch
import torch.nn as nn
import numpy as np
import math
# from timm.models.vision_transformer import PatchEmbed, Attention, Mlp
from timm.models.vision_transformer import PatchEmbed, Mlp
from einops import rearrange
from pdb import set_trace as st

# support flash attention and xformer acceleration
from ldm.modules.attention import CrossAttention
from vit.vision_transformer import MemEffAttention as Attention
# import apex
# from apex.normalization import FusedRMSNorm as RMSNorm

from torch.nn import LayerNorm

try:
    from apex.normalization import FusedRMSNorm as RMSNorm
except:
    from dit.norm import RMSNorm

# from torch.nn import LayerNorm
# from xformers import triton
# import xformers.triton

# if torch.cuda.is_available():

# from xformers.triton import FusedLayerNorm as LayerNorm # compat issue
from xformers.components.activations import build_activation, Activation
from xformers.components.feedforward import fused_mlp
# from xformers.components.feedforward import mlp

from ldm.modules.attention import MemoryEfficientCrossAttention, JointMemoryEfficientCrossAttention


def modulate(x, shift, scale):
    return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


def t2i_modulate(x, shift, scale):  # for pix-art arch
    return x * (1 + scale) + shift


#################################################################################
#               Embedding Layers for Timesteps and Class Labels                 #
#################################################################################


class T2IFinalLayer(nn.Module):
    """
    The final layer of PixArt.
    """
    # from torch.nn import LayerNorm

    def __init__(self, hidden_size, patch_size, out_channels):
        super().__init__()
        # self.norm_final = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.norm_final = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size,
                                patch_size * patch_size * out_channels,
                                bias=True)
        self.scale_shift_table = nn.Parameter(
            torch.randn(2, hidden_size) / hidden_size**0.5)
        self.adaLN_modulation = None
        self.out_channels = out_channels

    def forward(self, x, t):
        shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2,
                                                                         dim=1)
        x = t2i_modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """

    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.
        :param t: a 1-D Tensor of N indices, one per batch element.
                          These may be fractional.
        :param dim: the dimension of the output.
        :param max_period: controls the minimum frequency of the embeddings.
        :return: an (N, D) Tensor of positional embeddings.
        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period) *
            torch.arange(start=0, end=half, dtype=torch.float32) /
            half).to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat(
                [embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq)
        return t_emb


class LabelEmbedder(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
    """

    def __init__(self, num_classes, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding,
                                            hidden_size)
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(labels.shape[0],
                                  device=labels.device) < self.dropout_prob
        else:
            drop_ids = force_drop_ids == 1
        labels = torch.where(drop_ids, self.num_classes, labels)
        return labels

    def forward(self, labels, train, force_drop_ids=None):
        use_dropout = self.dropout_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        embeddings = self.embedding_table(labels)
        return embeddings


class ClipProjector(nn.Module):

    def __init__(self, transformer_width, embed_dim, tx_width, *args,
                 **kwargs) -> None:
        super().__init__(*args, **kwargs)
        '''a CLIP text encoder projector, adapted from CLIP.encode_text
        '''

        self.text_projection = nn.Parameter(
            torch.empty(transformer_width, embed_dim))
        nn.init.normal_(self.text_projection, std=tx_width**-0.5)

    def forward(self, clip_text_x):
        return clip_text_x @ self.text_projection


def approx_gelu():
    return nn.GELU(approximate="tanh")


class CaptionEmbedder(nn.Module):
    """
    copied from https://github.com/hpcaitech/Open-Sora

    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
    """

    def __init__(self,
                 in_channels,
                 hidden_size,
                 act_layer=nn.GELU(approximate="tanh"),
                 token_num=120):
        super().__init__()

        self.y_proj = Mlp(in_features=in_channels,
                          hidden_features=hidden_size,
                          out_features=hidden_size,
                          act_layer=act_layer,
                          drop=0)
        # self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels**0.5))
        # self.uncond_prob = uncond_prob

    # def token_drop(self, caption, force_drop_ids=None):
    #     """
    #     Drops labels to enable classifier-free guidance.
    #     """
    #     if force_drop_ids is None:
    #         drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
    #     else:
    #         drop_ids = force_drop_ids == 1
    #     caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
    #     return caption

    def forward(self, caption, **kwargs):
        # if train:
        #     assert caption.shape[2:] == self.y_embedding.shape
        # use_dropout = self.uncond_prob > 0
        # if (train and use_dropout) or (force_drop_ids is not None):
        #     caption = self.token_drop(caption, force_drop_ids)
        caption = self.y_proj(caption)
        return caption


#################################################################################
#                                 Core DiT Model                                #
#################################################################################


class DiTBlock(nn.Module):
    """
    A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
    """

    def __init__(self,
                 hidden_size,
                 num_heads,
                 mlp_ratio=4.0,
                 context_dim=None,
                #  enable_rmsnorm=False,
                 norm_type='layernorm',
                 qk_norm=True,
                #  enable_rope=False,
                 **block_kwargs):
        super().__init__()
        # st()
        assert qk_norm
        # nn.LayerNorm
        if norm_type == 'layernorm':
            self.norm1 = LayerNorm(
                hidden_size,
                # affine=False,
                  elementwise_affine=False,
                eps=1e-6)
            self.norm2 = LayerNorm(
                hidden_size,
                # affine=False,
                elementwise_affine=False,
                eps=1e-6)
        else:
            assert norm_type == 'rmsnorm'  # more robust to bf16 training.
            self.norm1 = RMSNorm(hidden_size, eps=1e-5)
            self.norm2 = RMSNorm(hidden_size, eps=1e-5)

        # st()
        self.attn = Attention(hidden_size,
                              num_heads=num_heads,
                              qkv_bias=True,
                              qk_norm=qk_norm,
                              **block_kwargs)
        # mlp_hidden_dim = int(hidden_size * mlp_ratio)
        # approx_gelu = lambda: nn.GELU(approximate="tanh")

        # self.mlp = Mlp(in_features=hidden_size,
        #                hidden_features=mlp_hidden_dim,
        #                act_layer=approx_gelu,
        #                drop=0)

        self.mlp = fused_mlp.FusedMLP(
            dim_model=hidden_size,
            dropout=0,
            activation=Activation.GeLU,
            hidden_layer_multiplier=int(mlp_ratio),
        )

        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))

    def forward(self, x, c):
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
            c).chunk(6, dim=1)
        x = x + gate_msa.unsqueeze(1) * self.attn(
            modulate(self.norm1(x), shift_msa, scale_msa))
        x = x + gate_mlp.unsqueeze(1) * self.mlp(
            modulate(self.norm2(x), shift_mlp, scale_mlp))
        return x


class TextCondDiTBlock(DiTBlock):
    # https://github.com/hpcaitech/Open-Sora/blob/68b8f60ff0ff4b3a3b63fe1d8cb17d66b7845ef7/opensora/models/stdit/stdit.py#L69
    def __init__(self, hidden_size, num_heads, mlp_ratio=4, **block_kwargs):
        super().__init__(hidden_size, num_heads, mlp_ratio, **block_kwargs)
        self.cross_attn = MemoryEfficientCrossAttention(query_dim=hidden_size,
                                                        heads=num_heads)
        # self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)

    def forward(self, x, t, context):
        # B, N, C = x.shape

        # shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
        #    self.scale_shift_table[None] + t.reshape(B,6,-1)).chunk(6, dim=1)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
            t).chunk(6, dim=1)

        x = x + gate_msa.unsqueeze(1) * self.attn(
            modulate(self.norm1(x), shift_msa, scale_msa))

        # add text embedder via pre-norm cross attention
        x = x + self.cross_attn(x, context)

        x = x + gate_mlp.unsqueeze(1) * self.mlp(
            modulate(self.norm2(x), shift_mlp, scale_mlp))

        return x


class PixelArtTextCondDiTBlock(DiTBlock):
    # 1. add shared AdaLN
    # 2. add return pooled vector token (in the outer loop already)
    def __init__(self,
                 hidden_size,
                 num_heads,
                 mlp_ratio=4,
                 context_dim=None,
                qk_norm=True,
                 **block_kwargs):
        super().__init__(hidden_size,
                         num_heads,
                         mlp_ratio,
                         norm_type='rmsnorm',
                         qk_norm=qk_norm,
                         **block_kwargs)
        # super().__init__(hidden_size, num_heads, mlp_ratio, norm_type='layernorm', **block_kwargs)
        self.cross_attn = MemoryEfficientCrossAttention(
            query_dim=hidden_size, context_dim=context_dim, heads=num_heads, qk_norm=qk_norm) # ! force QK_Norm
        self.scale_shift_table = nn.Parameter(
            torch.randn(6, hidden_size) / hidden_size**0.5)
        self.adaLN_modulation = None
        self.attention_y_norm = RMSNorm(
            context_dim, eps=1e-5
        )  # https://github.com/Alpha-VLLM/Lumina-T2X/blob/0c8dd6a07a3b7c18da3d91f37b1e00e7ae661293/lumina_t2i/models/model.py#L570C9-L570C61

        self.prenorm_ca_text = RMSNorm(hidden_size, eps=1e-5)

    def forward(self, x, t, context):
        B, N, C = x.shape

        # shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
        #    self.scale_shift_table[None] + t.reshape(B,6,-1)).chunk(6, dim=1)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1)
        # shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
        #     t).chunk(6, dim=1)

        x = x + gate_msa * self.attn(
            t2i_modulate(self.norm1(x), shift_msa, scale_msa))

        # add text embedder via cross attention
        x = x + self.cross_attn(self.prenorm_ca_text(x), self.attention_y_norm(context))

        x = x + gate_mlp * self.mlp(
            t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))

        return x


class MMTextCondDiTBlock(DiTBlock):
    # follow SD-3
    def __init__(self, hidden_size, num_heads, mlp_ratio=4, **block_kwargs):
        super().__init__(hidden_size, num_heads, mlp_ratio, **block_kwargs)
        self.cross_attn = MemoryEfficientCrossAttention(query_dim=hidden_size,
                                                        heads=num_heads)
        # self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)

        self.adaLN_modulation_img = nn.Sequential(
            nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))

        self.mlp_img = fused_mlp.FusedMLP(
            dim_model=hidden_size,
            dropout=0,
            activation=Activation.GeLU,
            hidden_layer_multiplier=int(mlp_ratio),
        )

    def forward(self, x, t, context):
        # B, N, C = x.shape

        # shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
        #    self.scale_shift_table[None] + t.reshape(B,6,-1)).chunk(6, dim=1)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
            t).chunk(6, dim=1)

        # TODO, batch inference with above
        shift_msa_img, scale_msa_img, gate_msa_img, shift_mlp_img, scale_mlp_img, gate_mlp_img = self.adaLN_modulation_img(
            t).chunk(6, dim=1)

        x = x + gate_msa.unsqueeze(1) * self.attn(
            modulate(self.norm1(x), shift_msa, scale_msa))

        # add text embedder via cross attention
        x = x + self.cross_attn(x, context)

        x = x + gate_mlp.unsqueeze(1) * self.mlp(
            modulate(self.norm2(x), shift_mlp, scale_mlp))

        return x


# for image condition


class ImageCondDiTBlock(DiTBlock):
    # follow EMU and SVD, concat + cross attention. Also adopted by concurrent work Direct3D.
    def __init__(self,
                 hidden_size,
                 num_heads,
                 context_dim,
                 mlp_ratio=4,
                #  enable_rmsnorm=False,
                 qk_norm=True,
                 enable_rope=False,
                 **block_kwargs):
        super().__init__(hidden_size=hidden_size,
                         num_heads=num_heads,
                         mlp_ratio=mlp_ratio,
                         context_dim=context_dim,
                        #  enable_rmsnorm=enable_rmsnorm,
                         qk_norm=qk_norm,
                         enable_rope=enable_rope,
                         **block_kwargs)
        assert qk_norm
        self.cross_attn = MemoryEfficientCrossAttention(
            query_dim=hidden_size,
            context_dim=context_dim, # ! mv-cond
            # context_dim=1280,  # clip vit-G, adopted by SVD.
            # context_dim=1024,  # clip vit-L
            heads=num_heads,
            # enable_rmsnorm=enable_rmsnorm, 
            qk_norm=qk_norm, 
            enable_rope=enable_rope)
        assert qk_norm
        # self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)

        self.attention_y_norm = RMSNorm(
            1024, eps=1e-5
        )  # https://github.com/Alpha-VLLM/Lumina-T2X/blob/0c8dd6a07a3b7c18da3d91f37b1e00e7ae661293/lumina_t2i/models/model.py#L570C9-L570C61

    def forward(self, x, t, dino_spatial_token, clip_spatial_token):
        # B, N, C = x.shape
        # assert isinstance(context, dict)
        # assert isinstance(context, dict) # clip + dino.

        # shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
        #    self.scale_shift_table[None] + t.reshape(B,6,-1)).chunk(6, dim=1)

        # TODO t is t + [clip_cls] here. update in base class.

        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
            t).chunk(6, dim=1)

        post_modulate_selfattn_feat = torch.cat([
            modulate(self.norm1(x), shift_msa, scale_msa), dino_spatial_token
        ],
                                                dim=1)  # concat in L dim

        x = x + gate_msa.unsqueeze(1) * self.attn(
            post_modulate_selfattn_feat
        )[:, :x.shape[1]]  # remove dino-feat to maintain unchanged dimension.

        # add clip_i spatial embedder via cross attention
        x = x + self.cross_attn(x, self.attention_y_norm(clip_spatial_token))

        x = x + gate_mlp.unsqueeze(1) * self.mlp(
            modulate(self.norm2(x), shift_mlp, scale_mlp))

        return x


class ImageCondDiTBlockPixelArt(ImageCondDiTBlock):
    # follow EMU and SVD, concat + cross attention. Also adopted by concurrent work Direct3D.
    def __init__(self,
                 hidden_size,
                 num_heads,
                 context_dim,
                 mlp_ratio=4,
                #  enable_rmsnorm=False,
                 qk_norm=False,
                    norm_type='rmsnorm',
                 **block_kwargs):
        # super().__init__(hidden_size, num_heads, mlp_ratio, enable_rmsnorm=True, **block_kwargs)
        super().__init__(hidden_size=hidden_size,
                         num_heads=num_heads,
                         mlp_ratio=mlp_ratio,
                         context_dim=context_dim,
                        #  enable_rmsnorm=False,
                         qk_norm=True, # otherwise AMP fail
                         norm_type=norm_type,
                         **block_kwargs)
        self.scale_shift_table = nn.Parameter(
            torch.randn(6, hidden_size) / hidden_size**0.5)
        self.adaLN_modulation = None  # single-adaLN
        # self.attention_y_norm = RMSNorm(
        #     1024, eps=1e-5
        # )  # https://github.com/Alpha-VLLM/Lumina-T2X/blob/0c8dd6a07a3b7c18da3d91f37b1e00e7ae661293/lumina_t2i/models/model.py#L570C9-L570C61

    def forward(self, x, t, dino_spatial_token, clip_spatial_token):
        B, N, C = x.shape
        # assert isinstance(context, dict)
        # assert isinstance(context, dict) # clip + dino.

        # shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
        #    self.scale_shift_table[None] + t.reshape(B,6,-1)).chunk(6, dim=1)

        # TODO t is t + [clip_cls] here. update in base class.

        # shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
        # t).chunk(6, dim=1)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1)
        # st()

        post_modulate_selfattn_feat = torch.cat([
            t2i_modulate(self.norm1(x), shift_msa, scale_msa),
            dino_spatial_token
        ],
                                                dim=1)  # concat in L dim

        # x = x + gate_msa.unsqueeze(1) * self.attn(
        x = x + gate_msa * self.attn(post_modulate_selfattn_feat)[:, :x.shape[
            1]]  # remove dino-feat to maintain unchanged dimension.

        # add clip_i spatial embedder via cross attention
        x = x + self.cross_attn(x, clip_spatial_token) # attention_y_norm not required, since x_norm_patchtokens?
        # x = x + self.cross_attn(x, self.attention_y_norm(clip_spatial_token)) # attention_y_norm not required, since x_norm_patchtokens?

        x = x + gate_mlp * self.mlp(
            t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))

        return x

class ImageCondDiTBlockPixelArtNoclip(ImageCondDiTBlock):
    # follow EMU and SVD, concat + cross attention. Also adopted by concurrent work Direct3D.
    def __init__(self,
                 hidden_size,
                 num_heads,
                 context_dim,
                 mlp_ratio=4,
                #  enable_rmsnorm=False,
                 qk_norm=False,
                 **block_kwargs):
        # super().__init__(hidden_size, num_heads, mlp_ratio, enable_rmsnorm=True, **block_kwargs)
        super().__init__(hidden_size=hidden_size,
                         num_heads=num_heads,
                         mlp_ratio=mlp_ratio,
                         context_dim=context_dim,
                        #  enable_rmsnorm=False,
                         qk_norm=True, # otherwise AMP fail
                         **block_kwargs)
        self.scale_shift_table = nn.Parameter(
            torch.randn(6, hidden_size) / hidden_size**0.5)
        self.adaLN_modulation = None  # single-adaLN
        # self.attention_y_norm = RMSNorm(
        #     1024, eps=1e-5
        # )  # https://github.com/Alpha-VLLM/Lumina-T2X/blob/0c8dd6a07a3b7c18da3d91f37b1e00e7ae661293/lumina_t2i/models/model.py#L570C9-L570C61

    # def _forward_cross_attention(self, x, tokens):
    #     x = x + self.cross_attn(x, tokens) # attention_y_norm not required, since x_norm_patchtokens?
    #     return x

    # def forward(self, x, t, dino_spatial_token, clip_spatial_token):
    def forward(self, x, t, dino_spatial_token):
        B, N, C = x.shape
        # assert isinstance(context, dict)
        # assert isinstance(context, dict) # clip + dino.

        # shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
        #    self.scale_shift_table[None] + t.reshape(B,6,-1)).chunk(6, dim=1)

        # TODO t is t + [clip_cls] here. update in base class.

        # shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
        # t).chunk(6, dim=1)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1)
        # st()

        post_modulate_selfattn_feat = t2i_modulate(self.norm1(x), shift_msa, scale_msa)

            # t2i_modulate(self.norm1(x), shift_msa, scale_msa),
            # dino_spatial_token
        # ],
                                                # dim=1)  # concat in L dim

        # x = x + gate_msa.unsqueeze(1) * self.attn(
        x = x + gate_msa * self.attn(post_modulate_selfattn_feat) # remove dino-feat to maintain unchanged dimension.

        # add clip_i spatial embedder via cross attention
        x = x + self.cross_attn(x, dino_spatial_token) # attention_y_norm not required, since x_norm_patchtokens?
        # x = self._forward_cross_attention(x, dino_spatial_token)
        # x = x + self.cross_attn(x, self.attention_y_norm(clip_spatial_token)) # attention_y_norm not required, since x_norm_patchtokens?

        x = x + gate_mlp * self.mlp(
            t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))

        return x


class ImageCondDiTBlockPixelArtRMSNorm(ImageCondDiTBlockPixelArt):
    # follow EMU and SVD, concat + cross attention. Also adopted by concurrent work Direct3D.
    def __init__(self,
                 hidden_size,
                 num_heads,
                 context_dim,
                 mlp_ratio=4,
                # enable_rmsnorm=False,
                norm_type='rmsnorm',
                 **block_kwargs):
        super().__init__(hidden_size=hidden_size,
                         num_heads=num_heads,
                         mlp_ratio=mlp_ratio,
                         context_dim=context_dim,
                        #  enable_rmsnorm=False,
                         norm_type=norm_type,
                         **block_kwargs)


class ImageCondDiTBlockPixelArtRMSNormNoClip(ImageCondDiTBlockPixelArtNoclip):
    # follow EMU and SVD, concat + cross attention. Also adopted by concurrent work Direct3D.
    def __init__(self,
                 hidden_size,
                 num_heads,
                 context_dim,
                 mlp_ratio=4,
                 **block_kwargs):
        super().__init__(hidden_size=hidden_size,
                         num_heads=num_heads,
                         mlp_ratio=mlp_ratio,
                         context_dim=context_dim,
                         enable_rmsnorm=False,
                         norm_type='rmsnorm',
                         **block_kwargs)

# support more conditions
class ImageCondDiTBlockPixelArtRMSNormClay(ImageCondDiTBlockPixelArtRMSNorm):
    # follow EMU and SVD, concat + cross attention. Also adopted by concurrent work Direct3D.
    def __init__(self,
                 hidden_size,
                 num_heads,
                 context_dim,
                 mlp_ratio=4,
                 qk_norm=True,
                 norm_type='rmsnorm',
                 enable_text_ca=False,
                 **block_kwargs):
        super().__init__(hidden_size=hidden_size,
                         num_heads=num_heads,
                         mlp_ratio=mlp_ratio,
                         context_dim=context_dim,
                        #  enable_rmsnorm=False,
                         norm_type=norm_type,
                         qk_norm=qk_norm,
                         **block_kwargs)

        # ca for text
        self.cross_attn_dino = MemoryEfficientCrossAttention(
            query_dim=hidden_size,
            context_dim=context_dim,
            heads=num_heads,
            # enable_rmsnorm=enable_rmsnorm, 
            qk_norm=qk_norm, 
            dim_head=hidden_size//num_heads)
        # if enable_text_ca:
        #     self.cross_attn_text = MemoryEfficientCrossAttention(
        #         query_dim=hidden_size,
        #         context_dim=context_dim,
        #         heads=num_heads,
        #         # enable_rmsnorm=enable_rmsnorm, 
        #         qk_norm=qk_norm)
        # else:
        self.cross_attn_text = lambda x, context: torch.zeros_like(x) # always return 0
        
    # def _forward_cross_attention(self, x, tokens):
    #     x = x + self.cross_attn(x, tokens) # attention_y_norm not required, since x_norm_patchtokens?
    #     return x
        
    def forward(self, x, t, dino_spatial_token, clip_spatial_token, clip_caption_token):
        B, N, C = x.shape

        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1)

        post_modulate_selfattn_feat = t2i_modulate(self.norm1(x), shift_msa, scale_msa)

        x = x + gate_msa * self.attn(post_modulate_selfattn_feat) # remove dino-feat to maintain unchanged dimension.

        # can be accelerated by parallel attention
        x = x + self.cross_attn(x, clip_spatial_token) + self.cross_attn_dino(x, dino_spatial_token) + self.cross_attn_text(x, clip_caption_token)

        x = x + gate_mlp * self.mlp(
            t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))

        return x

# lrm-like, CA-SA-FFN
class ImageCondDiTBlockPixelArtRMSNormClayLRM(ImageCondDiTBlockPixelArtRMSNorm):
    # follow EMU and SVD, concat + cross attention. Also adopted by concurrent work Direct3D.
    def __init__(self,
                 hidden_size,
                 num_heads,
                 context_dim,
                 mlp_ratio=4,
                 qk_norm=True,
                 norm_type='rmsnorm',
                 enable_text_ca=False,
                 enable_rope=False,
                 **block_kwargs):
        super().__init__(hidden_size=hidden_size,
                         num_heads=num_heads,
                         mlp_ratio=mlp_ratio,
                         context_dim=context_dim,
                        #  enable_rmsnorm=False,
                         norm_type=norm_type,
                         qk_norm=qk_norm,
                         enable_rope=enable_rope,
                         **block_kwargs)

        # ca for text
        self.cross_attn_dino = MemoryEfficientCrossAttention(
            query_dim=hidden_size,
            context_dim=context_dim,
            heads=num_heads,
            # enable_rmsnorm=enable_rmsnorm, 
            qk_norm=qk_norm,
            dim_head=hidden_size//num_heads, 
            enable_rope=enable_rope)
        self.prenorm_ca_dino = RMSNorm(hidden_size, eps=1e-5)
        # if enable_text_ca:
        #     self.cross_attn_text = MemoryEfficientCrossAttention(
        #         query_dim=hidden_size,
        #         context_dim=context_dim,
        #         heads=num_heads,
        #         # enable_rmsnorm=enable_rmsnorm, 
        #         qk_norm=qk_norm)
        # else:
        self.cross_attn_text = lambda x, context, freqs_cis: torch.zeros_like(x) # always return 0
        self.prenorm_ca_text = nn.Identity()
        del self.cross_attn # not for text now
        
    # def _forward_cross_attention(self, x, tokens):
    #     x = x + self.cross_attn(x, tokens) # attention_y_norm not required, since x_norm_patchtokens?
    #     return x
        
    def forward(self, x, t, dino_spatial_token, clip_caption_token=None, freqs_cis=None, **kwargs):
        B, N, C = x.shape

        # ! prepare adaLN
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1)

        # post_modulate_selfattn_feat = t2i_modulate(self.norm1(x), shift_msa, scale_msa)

        # ! CA for spaital info (img, mv-img .etc.)
        x = x + self.cross_attn_dino(self.prenorm_ca_dino(x), dino_spatial_token, freqs_cis=freqs_cis)  # ! pre-norm & residual, as in CLAY

        # ! SA
        x = x + gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), freqs_cis=freqs_cis) # remove dino-feat to maintain unchanged dimension.

        # # ! CA for text
        x = x + self.cross_attn_text(self.prenorm_ca_text(x), clip_caption_token, freqs_cis=freqs_cis)

        # ! FFN
        x = x + gate_mlp * self.mlp(
            t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))

        return x

# support more conditions
class ImageCondDiTBlockPixelArtRMSNormClayText(PixelArtTextCondDiTBlock):
    # follow EMU and SVD, concat + cross attention. Also adopted by concurrent work Direct3D.
    def __init__(self,
                 hidden_size,
                 num_heads,
                 context_dim,
                 mlp_ratio=4,
                 qk_norm=True,
                #  norm_type='rmsnorm',
                 enable_text_ca=False,
                 **block_kwargs):
        super().__init__(hidden_size=hidden_size,
                         num_heads=num_heads,
                         mlp_ratio=mlp_ratio,
                         context_dim=context_dim,
                        #  enable_rmsnorm=False,
                        #  norm_type=norm_type,
                         qk_norm=qk_norm,
                         **block_kwargs)

        # dino_hidden_size = 768
        dino_hidden_size = 384 # a dit-s as in clay
        self.cross_attn_dino = MemoryEfficientCrossAttention(
            query_dim=hidden_size,
            context_dim=dino_hidden_size,
            heads=num_heads,
            # enable_rmsnorm=enable_rmsnorm, 
            qk_norm=qk_norm)
        self.prenorm_ca_dino = RMSNorm(hidden_size, eps=1e-5)


    def forward(self, x, t, dino_spatial_token, clip_caption_token=None, **kwargs):
        B, N, C = x.shape

        # ! prepare adaLN
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1)

        # post_modulate_selfattn_feat = t2i_modulate(self.norm1(x), shift_msa, scale_msa)

        # ! SA
        x = x + gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)) # remove dino-feat to maintain unchanged dimension.

        # # ! CA for text
        # x = x + self.cross_attn(self.prenorm_ca_text(x), self.attention_y_norm(clip_caption_token))

        # ! add more conditions through residuals.
        x = x + self.cross_attn(self.prenorm_ca_text(x), self.attention_y_norm(clip_caption_token)) + self.cross_attn_dino(self.prenorm_ca_dino(x), dino_spatial_token)

        # # ! CA for spaital info (img, mv-img .etc.)
        # x = x + self.cross_attn_dino(self.prenorm_ca_dino(x), dino_spatial_token)  # ! pre-norm & residual, as in CLAY

        # ! FFN
        x = x + gate_mlp * self.mlp(
            t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))

        return x


# support more conditions
class ImageCondDiTBlockPixelArtRMSNormClayMV(ImageCondDiTBlockPixelArtRMSNormClayLRM):
    # follow EMU and SVD, concat + cross attention. Also adopted by concurrent work Direct3D.
    def __init__(self,
                 hidden_size,
                 num_heads,
                 context_dim,
                 mlp_ratio=4,
                 qk_norm=True,
                #  norm_type='rmsnorm',
                 enable_text_ca=False,
                 **block_kwargs):
        super().__init__(hidden_size=hidden_size,
                         num_heads=num_heads,
                         mlp_ratio=mlp_ratio,
                         context_dim=context_dim,
                        #  enable_rmsnorm=False,
                        #  norm_type=norm_type,
                         qk_norm=qk_norm,
                         **block_kwargs)

        # dino_hidden_size = 768
        dino_hidden_size = 384 # a dit-s as in clay
        self.cross_attn_dino_mv = MemoryEfficientCrossAttention(
            query_dim=hidden_size,
            context_dim=dino_hidden_size,
            heads=num_heads,
            # enable_rmsnorm=enable_rmsnorm, 
            qk_norm=qk_norm)
        self.prenorm_ca_dino_mv = RMSNorm(hidden_size, eps=1e-5)
        # self.mv_alpha = nn.Parameter(torch.zeros(1)-2.5) # per-layer blending into the original parameters, like zero-conv.
        # self.mv_alpha = nn.Parameter(torch.zeros(1)+2.5) # per-layer blending into the original parameters, like zero-conv.
        self.mv_alpha = nn.Parameter(torch.zeros(1)) # per-layer blending into the original parameters, like zero-conv.


    def forward(self, x, t, dino_spatial_token, dino_mv_spatial_token=None, **kwargs):
        B, N, C = x.shape

        # ! prepare adaLN
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1)

        # post_modulate_selfattn_feat = t2i_modulate(self.norm1(x), shift_msa, scale_msa)

        # ! CA for spaital info (img, mv-img .etc.)
        x = x + self.cross_attn_dino(self.prenorm_ca_dino(x), dino_spatial_token) + self.cross_attn_dino_mv(self.prenorm_ca_dino_mv(x), dino_mv_spatial_token) * (torch.nn.functional.tanh(self.mv_alpha))

        # ! SA
        x = x + gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)) # remove dino-feat to maintain unchanged dimension.

        # # ! CA for text
        # x = x + self.cross_attn_text(self.prenorm_ca_text(x), clip_caption_token)

        # ! FFN
        x = x + gate_mlp * self.mlp(
            t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))

        return x

# no i23d ca
class ImageCondDiTBlockPixelArtRMSNormClayMV_noi23d(ImageCondDiTBlockPixelArtRMSNormClayLRM):
    # follow EMU and SVD, concat + cross attention. Also adopted by concurrent work Direct3D.
    def __init__(self,
                 hidden_size,
                 num_heads,
                 context_dim,
                 mlp_ratio=4,
                 qk_norm=True,
                #  norm_type='rmsnorm',
                 enable_text_ca=False,
                 **block_kwargs):
        super().__init__(hidden_size=hidden_size,
                         num_heads=num_heads,
                         mlp_ratio=mlp_ratio,
                         context_dim=context_dim,
                        #  enable_rmsnorm=False,
                        #  norm_type=norm_type,
                         qk_norm=qk_norm,
                         **block_kwargs)

        # del self.cross_attn_dino, self.prenorm_ca_dino
        del self.cross_attn_dino
        self.prenorm_ca_dino_mv = self.prenorm_ca_dino
        # dino_hidden_size = 768
        dino_hidden_size = 384 # a dit-s as in clay
        self.cross_attn_dino_mv = MemoryEfficientCrossAttention(
            query_dim=hidden_size,
            context_dim=dino_hidden_size,
            heads=num_heads,
            # enable_rmsnorm=enable_rmsnorm, 
            qk_norm=qk_norm)
        # self.prenorm_ca_dino_mv = RMSNorm(hidden_size, eps=1e-5)
        # self.mv_alpha = nn.Parameter(torch.zeros(1)-2.5) # per-layer blending into the original parameters, like zero-conv.
        # self.mv_alpha = nn.Parameter(torch.zeros(1)+2.5) # per-layer blending into the original parameters, like zero-conv.
        # self.mv_alpha = nn.Parameter(torch.zeros(1)) # per-layer blending into the original parameters, like zero-conv.


    # def forward(self, x, t, dino_spatial_token, dino_mv_spatial_token=None, **kwargs):
    def forward(self, x, t, dino_mv_spatial_token, **kwargs):
        B, N, C = x.shape

        # ! prepare adaLN
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1)

        # post_modulate_selfattn_feat = t2i_modulate(self.norm1(x), shift_msa, scale_msa)

        # ! CA for spaital info (img, mv-img .etc.)
        # x = x + self.cross_attn_dino(self.prenorm_ca_dino(x), dino_spatial_token) + self.cross_attn_dino_mv(self.prenorm_ca_dino_mv(x), dino_mv_spatial_token) * (torch.nn.functional.tanh(self.mv_alpha))
        x = x + self.cross_attn_dino_mv(self.prenorm_ca_dino_mv(x), dino_mv_spatial_token)

        # ! SA
        x = x + gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)) # remove dino-feat to maintain unchanged dimension.

        # # ! CA for text
        # x = x + self.cross_attn_text(self.prenorm_ca_text(x), clip_caption_token)

        # ! FFN
        x = x + gate_mlp * self.mlp(
            t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))

        return x




class DiTBlockRollOut(DiTBlock):
    """
    A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
    """

    def __init__(self, hidden_size, num_heads, mlp_ratio=4, **block_kwargs):
        super().__init__(hidden_size * 3, num_heads, mlp_ratio, **block_kwargs)

    def forward(self, x, c):
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
            c).chunk(6, dim=1)
        x = x + gate_msa.unsqueeze(1) * self.attn(
            modulate(self.norm1(x), shift_msa, scale_msa))
        x = x + gate_mlp.unsqueeze(1) * self.mlp(
            modulate(self.norm2(x), shift_mlp, scale_mlp))
        return x
# 

class FinalLayer(nn.Module):
    """
    The final layer of DiT, basically the decoder_pred in MAE with adaLN.
    """

    def __init__(self, hidden_size, patch_size, out_channels):
        super().__init__()
        # self.norm_final = nn.LayerNorm(hidden_size,
        self.norm_final = LayerNorm(
            hidden_size,
               elementwise_affine=False,#  apex or nn kernel
            # affine=False,
            eps=1e-6)
        self.linear = nn.Linear(hidden_size,
                                patch_size * patch_size * out_channels,
                                bias=True)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


class DiT(nn.Module):
    """
    Diffusion model with a Transformer backbone.
    """

    def __init__(
        self,
        input_size=32,
        patch_size=2,
        in_channels=4,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        class_dropout_prob=0.1,
        num_classes=1000,
        learn_sigma=True,
        mixing_logit_init=-3,
        mixed_prediction=True,
        context_dim=False,
        roll_out=False,
        vit_blk=DiTBlock,
        # vit_blk=TextCondDiTBlock,
        final_layer_blk=FinalLayer,
        enable_rope=False,
    ):
        super().__init__()
        self.plane_n = 3
        # st()

        self.depth = depth
        self.mlp_ratio = mlp_ratio
        self.learn_sigma = learn_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if learn_sigma else in_channels
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.embed_dim = hidden_size

        self.x_embedder = PatchEmbed(input_size,
                                     patch_size,
                                     in_channels,
                                     hidden_size,
                                     bias=True)
        self.t_embedder = TimestepEmbedder(hidden_size)
        if num_classes > 0:
            self.y_embedder = LabelEmbedder(num_classes, hidden_size,
                                            class_dropout_prob)
        else:
            self.y_embedder = None

        if context_dim is not None:
            self.clip_text_proj = CaptionEmbedder(context_dim,
                                                  hidden_size,
                                                  act_layer=approx_gelu)

        else:
            self.clip_text_proj = None

        self.roll_out = roll_out

        num_patches = self.x_embedder.num_patches  # 14*14*3
        # Will use fixed sin-cos embedding:
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size),
                                      requires_grad=False)

        # if not self.roll_out:
        self.blocks = nn.ModuleList([
            vit_blk(hidden_size=hidden_size,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    context_dim=context_dim, 
                    enable_rope=enable_rope) for _ in range(depth)
        ])
        # else:
        #     self.blocks = nn.ModuleList([
        #         DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) if idx % 2 == 0 else
        #         DiTBlockRollOut(hidden_size, num_heads, mlp_ratio=mlp_ratio)
        #         for idx in range(depth)
        #     ])

        self.final_layer = final_layer_blk(hidden_size, patch_size,
                                           self.out_channels)
        self.initialize_weights()

        # self.mixed_prediction = mixed_prediction  # This enables mixed prediction
        # if self.mixed_prediction:
        #     if self.roll_out:
        #         logit_ch = in_channels * 3
        #     else:
        #         logit_ch = in_channels
        #     init = mixing_logit_init * torch.ones(
        #         size=[1, logit_ch, 1, 1])  # hard coded for now
        #     self.mixing_logit = torch.nn.Parameter(init, requires_grad=True)

    # def len(self):
    #     return len(self.blocks)

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # Initialize (and freeze) pos_embed by sin-cos embedding:
        pos_embed = get_2d_sincos_pos_embed(
            self.pos_embed.shape[-1], int(self.x_embedder.num_patches**0.5))
        # st()
        self.pos_embed.data.copy_(
            torch.from_numpy(pos_embed).float().unsqueeze(0))

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        w = self.x_embedder.proj.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
        nn.init.constant_(self.x_embedder.proj.bias, 0)

        # Initialize label embedding table:
        if self.y_embedder is not None:
            nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in DiT blocks:
        for block in self.blocks:
            if block.adaLN_modulation is not None:
                nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
                nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Zero-out output layers:
        if self.final_layer.adaLN_modulation is not None:
            nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)

        nn.init.constant_(self.final_layer.linear.weight, 0)
        nn.init.constant_(self.final_layer.linear.bias, 0)

    def unpatchify(self, x):
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        c = self.out_channels
        # p = self.x_embedder.patch_size[0]
        p = self.patch_size
        h = w = int(x.shape[1]**0.5)
        assert h * w == x.shape[1]

        x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
        x = torch.einsum('nhwpqc->nchpwq', x)
        imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
        return imgs

    # def forward(self, x, t, y=None, get_attr=''):
    def forward(self,
                x,
                timesteps=None,
                context=None,
                y=None,
                get_attr='',
                **kwargs):
        """
        Forward pass of DiT.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        # t = timesteps

        if get_attr != '':  # not breaking the forward hooks
            return getattr(self, get_attr)

        t = self.t_embedder(timesteps)  # (N, D)

        if self.roll_out:  # !
            x = rearrange(x, 'b (c n) h w->(b n) c h w', n=3)

        x = self.x_embedder(
            x) + self.pos_embed  # (N, T, D), where T = H * W / patch_size ** 2

        if self.roll_out:  # ! roll-out in the L dim, not B dim. add condition to all tokens.
            x = rearrange(x, '(b n) l c ->b (n l) c', n=3)

        # if self.y_embedder is not None:
        #     assert y is not None
        #     y = self.y_embedder(y, self.training)  # (N, D)
        #     c = t + y  # (N, D)

        assert context is not None

        # assert context.ndim == 2
        if isinstance(context, dict):
            context = context['crossattn']  # sgm conditioner compat
        context = self.clip_text_proj(context)

        # c = t + context
        # else:
        # c = t  # BS 1024

        for blk_idx, block in enumerate(self.blocks):
            # if self.roll_out:
            #     if blk_idx % 2 == 0: # with-in plane self attention
            #         x = rearrange(x, 'b (n l) c -> b l (n c) ', n=3)
            #         x = block(x, torch.repeat_interleave(c, 3, 0))  # (N, T, D)
            #     else: # global attention
            #         # x = rearrange(x, '(b n) l c -> b (n l) c ', n=3)
            #         x = rearrange(x, 'b l (n c) -> b (n l) c ', n=3)
            #         x = block(x, c)  # (N, T, D)
            # else:
            # st()
            x = block(x, t, context)  # (N, T, D)

        # todo later
        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)

        if self.roll_out:  # move n from L to B axis
            x = rearrange(x, 'b (n l) c ->(b n) l c', n=3)

        x = self.unpatchify(x)  # (N, out_channels, H, W)

        if self.roll_out:  # move n from L to B axis
            x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3)
            # x = rearrange(x, 'b n) c h w -> b (n c) h w', n=3)

        # cast to float32 for better accuracy
        x = x.to(torch.float32)

        return x

    def forward_with_cfg(self, x, t, y, cfg_scale):
        """
        Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
        """
        # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
        half = x[:len(x) // 2]
        combined = torch.cat([half, half], dim=0)
        model_out = self.forward(combined, t, y)
        # For exact reproducibility reasons, we apply classifier-free guidance on only
        # three channels by default. The standard approach to cfg applies it to all channels.
        # This can be done by uncommenting the following line and commenting-out the line following that.
        # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
        eps, rest = model_out[:, :3], model_out[:, 3:]
        cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
        half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
        eps = torch.cat([half_eps, half_eps], dim=0)
        return torch.cat([eps, rest], dim=1)

    def forward_with_cfg_unconditional(self, x, t, y=None, cfg_scale=None):
        """
        Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
        """
        # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
        # half = x[:len(x) // 2]
        # combined = torch.cat([half, half], dim=0)
        combined = x
        model_out = self.forward(combined, t, y)
        # For exact reproducibility reasons, we apply classifier-free guidance on only
        # three channels by default. The standard approach to cfg applies it to all channels.
        # This can be done by uncommenting the following line and commenting-out the line following that.
        # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
        # eps, rest = model_out[:, :3], model_out[:, 3:]
        # cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
        # half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
        # eps = torch.cat([half_eps, half_eps], dim=0)
        # return torch.cat([eps, rest], dim=1)
        # st()
        return model_out


#################################################################################
#                   Sine/Cosine Positional Embedding Functions                  #
#################################################################################
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py


def get_2d_sincos_pos_embed(embed_dim,
                            grid_size,
                            cls_token=False,
                            extra_tokens=0):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    if isinstance(grid_size, tuple):
        grid_size_h, grid_size_w = grid_size
        grid_h = np.arange(grid_size_h, dtype=np.float32)
        grid_w = np.arange(grid_size_w, dtype=np.float32)
    else:
        grid_size_h = grid_size_w = grid_size
        grid_h = np.arange(grid_size, dtype=np.float32)
        grid_w = np.arange(grid_size, dtype=np.float32)

    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size_h, grid_size_w])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate(
            [np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2,
                                              grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2,
                                              grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.
    omega = 1. / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


#################################################################################
#                                   DiT Configs                                  #
#################################################################################


def DiT_XL_2(**kwargs):
    return DiT(depth=28,
               hidden_size=1152,
               patch_size=2,
               num_heads=16,
               **kwargs)


def DiT_XL_4(**kwargs):
    return DiT(depth=28,
               hidden_size=1152,
               patch_size=4,
               num_heads=16,
               **kwargs)


def DiT_XL_8(**kwargs):
    return DiT(depth=28,
               hidden_size=1152,
               patch_size=8,
               num_heads=16,
               **kwargs)


def DiT_L_2(**kwargs):
    return DiT(depth=24,
               hidden_size=1024,
               patch_size=2,
               num_heads=16,
               **kwargs)


def DiT_L_4(**kwargs):
    return DiT(depth=24,
               hidden_size=1024,
               patch_size=4,
               num_heads=16,
               **kwargs)


def DiT_L_8(**kwargs):
    return DiT(depth=24,
               hidden_size=1024,
               patch_size=8,
               num_heads=16,
               **kwargs)


def DiT_B_2(**kwargs):
    return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs)


def DiT_B_4(**kwargs):
    return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)


def DiT_B_8(**kwargs):
    return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)


def DiT_B_16(**kwargs):  # ours cfg
    return DiT(depth=12,
               hidden_size=768,
               patch_size=16,
               num_heads=12,
               **kwargs)


def DiT_S_2(**kwargs):
    return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)


def DiT_S_4(**kwargs):
    return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)


def DiT_S_8(**kwargs):
    return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)


DiT_models = {
    'DiT-XL/2': DiT_XL_2,
    'DiT-XL/4': DiT_XL_4,
    'DiT-XL/8': DiT_XL_8,
    'DiT-L/2': DiT_L_2,
    'DiT-L/4': DiT_L_4,
    'DiT-L/8': DiT_L_8,
    'DiT-B/2': DiT_B_2,
    'DiT-B/4': DiT_B_4,
    'DiT-B/8': DiT_B_8,
    'DiT-B/16': DiT_B_16,
    'DiT-S/2': DiT_S_2,
    'DiT-S/4': DiT_S_4,
    'DiT-S/8': DiT_S_8,
}