File size: 21,062 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
"""
from ControlNet/cldm/cldm.py
"""
import copy
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
from typing import Any
import einops
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm

from guided_diffusion import dist_util, logger
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion.nn import update_ema
from guided_diffusion.resample import LossAwareSampler, UniformSampler
# from .train_util import TrainLoop3DRec
from guided_diffusion.train_util import (TrainLoop, calc_average_loss,
                                         find_ema_checkpoint,
                                         find_resume_checkpoint,
                                         get_blob_logdir, log_loss_dict,
                                         log_rec3d_loss_dict,
                                         parse_resume_step_from_filename)
from guided_diffusion.gaussian_diffusion import ModelMeanType

import dnnlib
from dnnlib.util import requires_grad
from dnnlib.util import calculate_adaptive_weight

from ..train_util_diffusion import TrainLoop3DDiffusion
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD

from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction, different_p_q_objectives, kl_per_group_vada, kl_balancer
from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD  # joint diffusion and rec class


class TrainLoop3DDiffusionLSGM_Control(TrainLoop3DDiffusionLSGMJointnoD):

    def __init__(self,
                 *,
                 rec_model,
                 denoise_model,
                 diffusion,
                 sde_diffusion,
                 control_model,
                 control_key,
                 only_mid_control,
                 loss_class,
                 data,
                 eval_data,
                 batch_size,
                 microbatch,
                 lr,
                 ema_rate,
                 log_interval,
                 eval_interval,
                 save_interval,
                 resume_checkpoint,
                 resume_cldm_checkpoint=None,
                 use_fp16=False,
                 fp16_scale_growth=0.001,
                 schedule_sampler=None,
                 weight_decay=0,
                 lr_anneal_steps=0,
                 iterations=10001,
                 ignore_resume_opt=False,
                 freeze_ae=False,
                 denoised_ae=True,
                 triplane_scaling_divider=10,
                 use_amp=False,
                 diffusion_input_size=224,
                 **kwargs):
        super().__init__(rec_model=rec_model,
                         denoise_model=denoise_model,
                         diffusion=diffusion,
                         sde_diffusion=sde_diffusion,
                         loss_class=loss_class,
                         data=data,
                         eval_data=eval_data,
                         batch_size=batch_size,
                         microbatch=microbatch,
                         lr=lr,
                         ema_rate=ema_rate,
                         log_interval=log_interval,
                         eval_interval=eval_interval,
                         save_interval=save_interval,
                         resume_checkpoint=resume_checkpoint,
                         resume_cldm_checkpoint=None,
                         use_fp16=use_fp16,
                         fp16_scale_growth=fp16_scale_growth,
                         schedule_sampler=schedule_sampler,
                         weight_decay=weight_decay,
                         lr_anneal_steps=lr_anneal_steps,
                         iterations=iterations,
                         ignore_resume_opt=ignore_resume_opt,
                         freeze_ae=freeze_ae,
                         denoised_ae=denoised_ae,
                         triplane_scaling_divider=triplane_scaling_divider,
                         use_amp=use_amp,
                         diffusion_input_size=diffusion_input_size,
                         **kwargs)
        self.resume_cldm_checkpoint = resume_cldm_checkpoint
        self.control_model = control_model
        self.control_key = control_key
        self.only_mid_control = only_mid_control
        self.control_scales = [1.0] * 13
        self.sd_locked = True
        self._setup_control_model()

    def _setup_control_model(self):

        requires_grad(self.rec_model, False)
        requires_grad(self.ddpm_model, self.sd_locked)

        self.mp_cldm_trainer = MixedPrecisionTrainer(
            model=self.control_model,
            use_fp16=self.use_fp16,
            fp16_scale_growth=self.fp16_scale_growth,
            use_amp=self.use_amp,
            model_name='cldm')

        self.ddp_control_model = DDP(
            self.control_model,
            device_ids=[dist_util.dev()],
            output_device=dist_util.dev(),
            broadcast_buffers=False,
            bucket_cap_mb=128,
            find_unused_parameters=False,
        )

        # ! load trainable copy
        try:
            logger.log(f"load pretrained controlnet, not trainable copy.")
            self._load_and_sync_parameters(model=self.control_model,
                                           model_name='cldm',
                                           resume_checkpoint=self.resume_cldm_checkpoint,
                                           )  # if available
        except:
            logger.log(f"load trainable copy to controlnet")
            self._load_and_sync_parameters(
                model=self.control_model,
                model_name='ddpm')  # load pre-trained SD

        cldm_param = [{
            'name': 'cldm.parameters()',
            'params': self.control_model.parameters(),
        }]
        if self.sde_diffusion.args.unfix_logit:
            self.ddpm_model.mixing_logit.requires_grad_(True)
            cldm_param.append({
                'name': 'mixing_logit',
                'params': self.ddpm_model.mixing_logit,
            })

        self.opt_cldm = AdamW(cldm_param,
                              lr=self.lr,
                              weight_decay=self.weight_decay)
        if self.sd_locked:
            del self.opt

    # def _load_model(self):
    #     super()._load_model()
    #     # ! load pre-trained "SD" and controlNet also
    #     self._load_and_sync_parameters(model=self.contro,
    #                                    model_name='cldm') #

    # def _setup_opt(self):
    # TODO, two optims groups.

    # for rec_param_group in self._init_optim_groups(self.rec_model):
    #     self.opt.add_param_group(rec_param_group)

    def run_loop(self):
        while (not self.lr_anneal_steps
               or self.step + self.resume_step < self.lr_anneal_steps):

            # let all processes sync up before starting with a new epoch of training
            # dist_util.synchronize()

            batch = next(self.data)
            self.run_step(batch, step='cldm_step')

            if self.step % self.log_interval == 0 and dist_util.get_rank(
            ) == 0:
                out = logger.dumpkvs()
                # * log to tensorboard
                for k, v in out.items():
                    self.writer.add_scalar(f'Loss/{k}', v,
                                           self.step + self.resume_step)

            if self.step % self.eval_interval == 0 and self.step != 0:
                # if self.step % self.eval_interval == 0:
                if dist_util.get_rank() == 0:
                    # self.eval_ddpm_sample()
                    self.eval_cldm()
                    # if self.sde_diffusion.args.train_vae:
                    #     self.eval_loop()

                th.cuda.empty_cache()
                dist_util.synchronize()

            if self.step % self.save_interval == 0:
                self.save(self.mp_cldm_trainer,
                          self.mp_cldm_trainer.model_name)
                if os.environ.get("DIFFUSION_TRAINING_TEST",
                                  "") and self.step > 0:
                    return

            self.step += 1

            if self.step > self.iterations:
                print('reached maximum iterations, exiting')

                # Save the last checkpoint if it wasn't already saved.
                if (self.step - 1) % self.save_interval != 0:

                    self.save(self.mp_cldm_trainer,
                              self.mp_cldm_trainer.model_name)
                    # if self.sde_diffusion.args.train_vae:
                    #     self.save(self.mp_trainer_rec,
                    #               self.mp_trainer_rec.model_name)

                exit()

        # Save the last checkpoint if it wasn't already saved.
        if (self.step - 1) % self.save_interval != 0:
            self.save(
                self.mp_cldm_trainer,
                self.mp_cldm_trainer.model_name)  # rec and ddpm all fixed.
            # st()
            # self.save(self.mp_trainer_canonical_cvD, 'cvD')

    def _update_cldm_ema(self):
        for rate, params in zip(self.ema_rate, self.ema_cldm_params):
            update_ema(params, self.mp_cldm_trainer.master_params, rate=rate)

    def run_step(self, batch, step='cldm_step'):

        # if step == 'diffusion_step_rec':

        if step == 'cldm_step':
            self.cldm_train_step(batch)

        # if took_step_ddpm:
        # self._update_cldm_ema()

        self._anneal_lr()
        self.log_step()

    @th.no_grad()
    def get_c_input(self, batch, bs=None, *args, **kwargs):
        # x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs)
        control = batch[self.control_key]
        if bs is not None:
            control = control[:bs]
        # control = control.to(self.device)
        # control = einops.rearrange(control, 'b h w c -> b c h w')
        control = control.to(memory_format=th.contiguous_format).float()
        # return x, dict(c_crossattn=[c], c_concat=[control])
        return dict(c_concat=[control])

    # for compatablity with p_sample, to lint
    def apply_model_inference(self, x_noisy, t, c, model_kwargs={}):
        control = self.ddp_control_model(x=x_noisy,
                                         hint=th.cat(c['c_concat'], 1),
                                         timesteps=t,
                                         context=None)
        control = [c * scale for c, scale in zip(control, self.control_scales)]
        pred_params = self.ddp_ddpm_model(
            x_noisy, t, **{
                **model_kwargs, 'control': control
            })
        return pred_params

    def apply_control_model(self, p_sample_batch, cond):
        x_noisy, t, = (p_sample_batch[k] for k in ('eps_t_p', 't_p'))

        control = self.ddp_control_model(x=x_noisy,
                                         hint=th.cat(cond['c_concat'], 1),
                                         timesteps=t,
                                         context=None)
        control = [c * scale for c, scale in zip(control, self.control_scales)]
        return control

    def apply_model(self, p_sample_batch, cond, model_kwargs={}):
        control = self.apply_control_model(p_sample_batch,
                                           cond)  # len(control): 13
        return super().apply_model(p_sample_batch, **{
            **model_kwargs, 'control': control
        })

    # ddpm + rec loss
    def cldm_train_step(self, batch, behaviour='cano', *args, **kwargs):
        """
        add sds grad to all ae predicted x_0 
        """

        # ! enable the gradient of both models
        requires_grad(self.ddp_control_model, True)

        self.mp_cldm_trainer.zero_grad()  # !!!!

        batch_size = batch['img'].shape[0]

        for i in range(0, batch_size, self.microbatch):

            micro = {
                k:
                v[i:i + self.microbatch].to(dist_util.dev()) if isinstance(
                    v, th.Tensor) else v
                for k, v in batch.items()
            }

            # =================================== ae part ===================================
            with th.cuda.amp.autocast(dtype=th.float16,
                                      enabled=self.mp_cldm_trainer.use_amp):

                loss = th.tensor(0.).to(dist_util.dev())

                vae_out = self.ddp_rec_model(
                    img=micro['img_to_encoder'],
                    c=micro['c'],
                    behaviour='encoder_vae',
                )  # pred: (B, 3, 64, 64)
                # eps = vae_out[self.latent_name]
                eps = vae_out.pop(self.latent_name)

                p_sample_batch = self.prepare_ddpm(eps)
                cond = self.get_c_input(micro)

                # ! running diffusion forward
                ddpm_ret = self.apply_model(p_sample_batch, cond)
                if self.sde_diffusion.args.p_rendering_loss:

                    target = micro
                    pred = self.ddp_rec_model(
                        # latent=vae_out,
                        latent={
                            # **vae_out, 
                            self.latent_name:
                            ddpm_ret['pred_x0_p'],
                            'latent_name': self.latent_name
                        },
                        c=micro['c'],
                        behaviour=self.render_latent_behaviour)

                    # vae reconstruction loss
                    with self.ddp_control_model.no_sync():  # type: ignore
                        p_vae_recon_loss, rec_loss_dict = self.loss_class(
                            pred, target, test_mode=False)
                    log_rec3d_loss_dict(rec_loss_dict)
                    # log_rec3d_loss_dict(
                    #     dict(p_vae_recon_loss=p_vae_recon_loss, ))
                    loss = p_vae_recon_loss + ddpm_ret['p_eps_objective']  # TODO, add obj_weight_t_p?
                else:
                    loss = ddpm_ret['p_eps_objective']

                # =====================================================================

            self.mp_cldm_trainer.backward(loss)  # joint gradient descent

        # update ddpm accordingly
        self.mp_cldm_trainer.optimize(self.opt_cldm)

        if dist_util.get_rank() == 0 and self.step % 500 == 0:
            self.log_control_images(vae_out, p_sample_batch, micro,
                                    ddpm_ret)

    @th.inference_mode()
    def log_control_images(self, vae_out, p_sample_batch, micro, ddpm_ret):

        eps_t_p, t_p, logsnr_p = (p_sample_batch[k] for k in (
            'eps_t_p',
            't_p',
            'logsnr_p',
        ))
        pred_eps_p = ddpm_ret['pred_eps_p']

        vae_out.pop('posterior')  # for calculating kl loss
        vae_out_for_pred = {
            k: v[0:1].to(dist_util.dev()) if isinstance(v, th.Tensor) else v
            for k, v in vae_out.items()
        }

        pred = self.ddp_rec_model(latent=vae_out_for_pred,
                                  c=micro['c'][0:1],
                                  behaviour=self.render_latent_behaviour)
        assert isinstance(pred, dict)

        pred_img = pred['image_raw']
        gt_img = micro['img']

        if 'depth' in micro:
            gt_depth = micro['depth']
            if gt_depth.ndim == 3:
                gt_depth = gt_depth.unsqueeze(1)
            gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
                                                    gt_depth.min())
        else:
            gt_depth = th.zeros_like(gt_img[:, 0:1, ...])

        if 'image_depth' in pred:
            pred_depth = pred['image_depth']
            pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
                                                            pred_depth.min())
        else:
            pred_depth = th.zeros_like(gt_depth)


        gt_img = self.pool_128(gt_img)
        gt_depth = self.pool_128(gt_depth)
        cond = self.get_c_input(micro)
        hint = th.cat(cond['c_concat'], 1)

        gt_vis = th.cat([
            gt_img,
            self.pool_128(hint), gt_img,
            gt_depth.repeat_interleave(3, dim=1)
        ],
                        dim=-1)[0:1]  # TODO, fail to load depth. range [0, 1]

        # eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L

        noised_ae_pred = self.ddp_rec_model(
            img=None,
            c=micro['c'][0:1],
            latent=eps_t_p[0:1] * self.
            triplane_scaling_divider,  # TODO, how to define the scale automatically
            behaviour=self.render_latent_behaviour)

        pred_x0 = self.sde_diffusion._predict_x0_from_eps(
            eps_t_p, pred_eps_p, logsnr_p)  # for VAE loss, denosied latent

        # pred_xstart_3D
        denoised_ae_pred = self.ddp_rec_model(
            img=None,
            c=micro['c'][0:1],
            latent=pred_x0[0:1] * self.
            triplane_scaling_divider,  # TODO, how to define the scale automatically?
            behaviour=self.render_latent_behaviour)

        pred_vis = th.cat(
            [
                self.pool_128(img) for img in (
                    pred_img[0:1],
                    noised_ae_pred['image_raw'][0:1],
                    denoised_ae_pred['image_raw'][0:1],  # controlnet result
                    pred_depth[0:1].repeat_interleave(3, dim=1))
            ],
            dim=-1)  # B, 3, H, W

        vis = th.cat([gt_vis, pred_vis],
                     dim=-2)[0].permute(1, 2,
                                        0).cpu()  # ! pred in range[-1, 1]

        # vis_grid = torchvision.utils.make_grid(vis) # HWC
        vis = vis.numpy() * 127.5 + 127.5
        vis = vis.clip(0, 255).astype(np.uint8)
        Image.fromarray(vis).save(
            f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}.jpg'
        )
        print(
            'log denoised vis to: ',
            f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}.jpg'
        )

        th.cuda.empty_cache()

    @th.inference_mode()
    def eval_cldm(self):
        self.control_model.eval()

        args = dnnlib.EasyDict(
            dict(
                batch_size=1,
                image_size=self.diffusion_input_size,
                denoise_in_channels=self.rec_model.decoder.triplane_decoder.
                out_chans,  # type: ignore
                clip_denoised=False,
                class_cond=False,
                use_ddim=False))

        model_kwargs = {}

        if args.class_cond:
            classes = th.randint(low=0,
                                 high=NUM_CLASSES,
                                 size=(args.batch_size, ),
                                 device=dist_util.dev())
            model_kwargs["y"] = classes

        diffusion = self.diffusion
        sample_fn = (diffusion.p_sample_loop
                     if not args.use_ddim else diffusion.ddim_sample_loop)

        # for i, batch in enumerate(tqdm(self.eval_data)):
        batch = next(iter(self.eval_data))

        # use the first frame as the condition now
        novel_view_cond = {
            k: v[0:1].to(dist_util.dev())  # .repeat_interleave(
            # micro['img'].shape[0], 0)
            for k, v in batch.items()
        }
        cond = self.get_c_input(novel_view_cond)
        hint = th.cat(cond['c_concat'], 1)

        # record cond images
        torchvision.utils.save_image(
            hint,
            f'{logger.get_dir()}/{self.step + self.resume_step}_cond.jpg',
            normalize=True,
            value_range=(-1, 1))

        # broadcast to args.batch_size
        cond = {
            k:
            [cond.repeat_interleave(args.batch_size, 0) for cond in cond_list]
            for k, cond_list in cond.items()  # list of Tensors
        }

        for i in range(1):
            triplane_sample = sample_fn(
                self,
                (
                    args.batch_size,
                    self.rec_model.decoder.ldm_z_channels * 3,  # type: ignore
                    self.diffusion_input_size,
                    self.diffusion_input_size),
                cond=cond,
                clip_denoised=args.clip_denoised,
                model_kwargs=model_kwargs,
                mixing_normal=True,  # !
                device=dist_util.dev())
            th.cuda.empty_cache()

            self.render_video_given_triplane(
                triplane_sample,
                self.rec_model,  # compatible with join_model
                name_prefix=f'{self.step + self.resume_step}_{i}')

            del triplane_sample
            th.cuda.empty_cache()

        self.control_model.train()