Spaces:
Running
on
Zero
Running
on
Zero
File size: 42,872 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
from threading import local
import torch
import torch.nn as nn
from torch_utils import persistence
from .networks_stylegan2 import Generator as StyleGAN2Backbone
from .networks_stylegan2 import ToRGBLayer, SynthesisNetwork, MappingNetwork
from .volumetric_rendering.renderer import ImportanceRenderer
from .volumetric_rendering.ray_sampler import RaySampler, PatchRaySampler
import dnnlib
from pdb import set_trace as st
import math
import torch.nn.functional as F
import itertools
from ldm.modules.diffusionmodules.model import SimpleDecoder, Decoder
@persistence.persistent_class
class TriPlaneGenerator(torch.nn.Module):
def __init__(
self,
z_dim, # Input latent (Z) dimensionality.
c_dim, # Conditioning label (C) dimensionality.
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output resolution.
img_channels, # Number of output color channels.
sr_num_fp16_res=0,
mapping_kwargs={}, # Arguments for MappingNetwork.
rendering_kwargs={},
sr_kwargs={},
bcg_synthesis_kwargs={},
# pifu_kwargs={},
# ada_kwargs={}, # not used, place holder
**synthesis_kwargs, # Arguments for SynthesisNetwork.
):
super().__init__()
self.z_dim = z_dim
self.c_dim = c_dim
self.w_dim = w_dim
self.img_resolution = img_resolution
self.img_channels = img_channels
self.renderer = ImportanceRenderer()
# if 'PatchRaySampler' in rendering_kwargs:
# self.ray_sampler = PatchRaySampler()
# else:
# self.ray_sampler = RaySampler()
self.backbone = StyleGAN2Backbone(z_dim,
c_dim,
w_dim,
img_resolution=256,
img_channels=32 * 3,
mapping_kwargs=mapping_kwargs,
**synthesis_kwargs)
self.superresolution = dnnlib.util.construct_class_by_name(
class_name=rendering_kwargs['superresolution_module'],
channels=32,
img_resolution=img_resolution,
sr_num_fp16_res=sr_num_fp16_res,
sr_antialias=rendering_kwargs['sr_antialias'],
**sr_kwargs)
# self.bcg_synthesis = None
if rendering_kwargs.get('use_background', False):
self.bcg_synthesis = SynthesisNetwork(
w_dim,
img_resolution=self.superresolution.input_resolution,
img_channels=32,
**bcg_synthesis_kwargs)
self.bcg_mapping = MappingNetwork(z_dim=z_dim,
c_dim=c_dim,
w_dim=w_dim,
num_ws=self.num_ws,
**mapping_kwargs)
# New mapping network for self-adaptive camera pose, dim = 3
self.decoder = OSGDecoder(
32, {
'decoder_lr_mul': rendering_kwargs.get('decoder_lr_mul', 1),
'decoder_output_dim': 32
})
self.neural_rendering_resolution = 64
self.rendering_kwargs = rendering_kwargs
self._last_planes = None
self.pool_256 = torch.nn.AdaptiveAvgPool2d((256, 256))
def mapping(self,
z,
c,
truncation_psi=1,
truncation_cutoff=None,
update_emas=False):
if self.rendering_kwargs['c_gen_conditioning_zero']:
c = torch.zeros_like(c)
return self.backbone.mapping(z,
c *
self.rendering_kwargs.get('c_scale', 0),
truncation_psi=truncation_psi,
truncation_cutoff=truncation_cutoff,
update_emas=update_emas)
def synthesis(self,
ws,
c,
neural_rendering_resolution=None,
update_emas=False,
cache_backbone=False,
use_cached_backbone=False,
return_meta=False,
return_raw_only=False,
**synthesis_kwargs):
return_sampling_details_flag = self.rendering_kwargs.get(
'return_sampling_details_flag', False)
if return_sampling_details_flag:
return_meta = True
cam2world_matrix = c[:, :16].view(-1, 4, 4)
# cam2world_matrix = torch.eye(4, device=c.device).unsqueeze(0).repeat_interleave(c.shape[0], dim=0)
# c[:, :16] = cam2world_matrix.view(-1, 16)
intrinsics = c[:, 16:25].view(-1, 3, 3)
if neural_rendering_resolution is None:
neural_rendering_resolution = self.neural_rendering_resolution
else:
self.neural_rendering_resolution = neural_rendering_resolution
H = W = self.neural_rendering_resolution
# Create a batch of rays for volume rendering
ray_origins, ray_directions = self.ray_sampler(
cam2world_matrix, intrinsics, neural_rendering_resolution)
# Create triplanes by running StyleGAN backbone
N, M, _ = ray_origins.shape
if use_cached_backbone and self._last_planes is not None:
planes = self._last_planes
else:
planes = self.backbone.synthesis(
ws[:, :self.backbone.num_ws, :], # ws, BS 14 512
update_emas=update_emas,
**synthesis_kwargs)
if cache_backbone:
self._last_planes = planes
# Reshape output into three 32-channel planes
planes = planes.view(len(planes), 3, 32, planes.shape[-2],
planes.shape[-1]) # BS 96 256 256
# Perform volume rendering
# st()
rendering_details = self.renderer(
planes,
self.decoder,
ray_origins,
ray_directions,
self.rendering_kwargs,
# return_meta=True)
return_meta=return_meta)
# calibs = create_calib_matrix(c)
# all_coords = rendering_details['all_coords']
# B, num_rays, S, _ = all_coords.shape
# all_coords_B3N = all_coords.reshape(B, -1, 3).permute(0,2,1)
# homo_coords = torch.cat([all_coords, torch.zeros_like(all_coords[..., :1])], -1)
# homo_coords[..., -1] = 1
# homo_coords = homo_coords.reshape(homo_coords.shape[0], -1, 4)
# homo_coords = homo_coords.permute(0,2,1)
# xyz = calibs @ homo_coords
# xyz = xyz.permute(0,2,1).reshape(B, H, W, S, 4)
# st()
# xyz_proj = perspective(all_coords_B3N, calibs)
# xyz_proj = xyz_proj.permute(0,2,1).reshape(B, H, W, S, 3) # [0,0] - [1,1]
# st()
feature_samples, depth_samples, weights_samples = (
rendering_details[k]
for k in ['feature_samples', 'depth_samples', 'weights_samples'])
if return_sampling_details_flag:
shape_synthesized = rendering_details['shape_synthesized']
else:
shape_synthesized = None
# Reshape into 'raw' neural-rendered image
feature_image = feature_samples.permute(0, 2, 1).reshape(
N, feature_samples.shape[-1], H, W).contiguous() # B 32 H W
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)
# Run superresolution to get final image
rgb_image = feature_image[:, :3] # B 3 H W
if not return_raw_only:
sr_image = self.superresolution(
rgb_image,
feature_image,
ws[:, -1:, :], # only use the last layer
noise_mode=self.rendering_kwargs['superresolution_noise_mode'],
**{
k: synthesis_kwargs[k]
for k in synthesis_kwargs.keys() if k != 'noise_mode'
})
else:
sr_image = rgb_image
ret_dict = {
'image': sr_image,
'image_raw': rgb_image,
'image_depth': depth_image,
'weights_samples': weights_samples,
'shape_synthesized': shape_synthesized
}
if return_meta:
ret_dict.update({
# 'feature_image': feature_image,
'feature_volume':
rendering_details['feature_volume'],
'all_coords':
rendering_details['all_coords'],
'weights':
rendering_details['weights'],
})
return ret_dict
def sample(self,
coordinates,
directions,
z,
c,
truncation_psi=1,
truncation_cutoff=None,
update_emas=False,
**synthesis_kwargs):
# Compute RGB features, density for arbitrary 3D coordinates. Mostly used for extracting shapes.
ws = self.mapping(z,
c,
truncation_psi=truncation_psi,
truncation_cutoff=truncation_cutoff,
update_emas=update_emas)
planes = self.backbone.synthesis(ws,
update_emas=update_emas,
**synthesis_kwargs)
planes = planes.view(len(planes), 3, 32, planes.shape[-2],
planes.shape[-1])
return self.renderer.run_model(planes, self.decoder, coordinates,
directions, self.rendering_kwargs)
def sample_mixed(self,
coordinates,
directions,
ws,
truncation_psi=1,
truncation_cutoff=None,
update_emas=False,
**synthesis_kwargs):
# Same as sample, but expects latent vectors 'ws' instead of Gaussian noise 'z'
planes = self.backbone.synthesis(ws,
update_emas=update_emas,
**synthesis_kwargs)
planes = planes.view(len(planes), 3, 32, planes.shape[-2],
planes.shape[-1])
return self.renderer.run_model(planes, self.decoder, coordinates,
directions, self.rendering_kwargs)
def forward(self,
z,
c,
truncation_psi=1,
truncation_cutoff=None,
neural_rendering_resolution=None,
update_emas=False,
cache_backbone=False,
use_cached_backbone=False,
**synthesis_kwargs):
# Render a batch of generated images.
ws = self.mapping(z,
c,
truncation_psi=truncation_psi,
truncation_cutoff=truncation_cutoff,
update_emas=update_emas)
return self.synthesis(
ws,
c,
update_emas=update_emas,
neural_rendering_resolution=neural_rendering_resolution,
cache_backbone=cache_backbone,
use_cached_backbone=use_cached_backbone,
**synthesis_kwargs)
from .networks_stylegan2 import FullyConnectedLayer
# class OSGDecoder(torch.nn.Module):
# def __init__(self, n_features, options):
# super().__init__()
# self.hidden_dim = 64
# self.output_dim = options['decoder_output_dim']
# self.n_features = n_features
# self.net = torch.nn.Sequential(
# FullyConnectedLayer(n_features,
# self.hidden_dim,
# lr_multiplier=options['decoder_lr_mul']),
# torch.nn.Softplus(),
# FullyConnectedLayer(self.hidden_dim,
# 1 + options['decoder_output_dim'],
# lr_multiplier=options['decoder_lr_mul']))
# def forward(self, sampled_features, ray_directions):
# # Aggregate features
# sampled_features = sampled_features.mean(1)
# x = sampled_features
# N, M, C = x.shape
# x = x.view(N * M, C)
# x = self.net(x)
# x = x.view(N, M, -1)
# rgb = torch.sigmoid(x[..., 1:]) * (
# 1 + 2 * 0.001) - 0.001 # Uses sigmoid clamping from MipNeRF
# sigma = x[..., 0:1]
# return {'rgb': rgb, 'sigma': sigma}
@persistence.persistent_class
class OSGDecoder(torch.nn.Module):
def __init__(self, n_features, options):
super().__init__()
self.hidden_dim = 64
self.decoder_output_dim = options['decoder_output_dim']
self.net = torch.nn.Sequential(
FullyConnectedLayer(n_features,
self.hidden_dim,
lr_multiplier=options['decoder_lr_mul']),
torch.nn.Softplus(),
FullyConnectedLayer(self.hidden_dim,
1 + options['decoder_output_dim'],
lr_multiplier=options['decoder_lr_mul']))
self.activation = options.get('decoder_activation', 'sigmoid')
def forward(self, sampled_features, ray_directions):
# Aggregate features
sampled_features = sampled_features.mean(1)
x = sampled_features
N, M, C = x.shape
x = x.view(N * M, C)
x = self.net(x)
x = x.view(N, M, -1)
rgb = x[..., 1:]
sigma = x[..., 0:1]
if self.activation == "sigmoid":
# Original EG3D
rgb = torch.sigmoid(rgb) * (1 + 2 * 0.001) - 0.001
elif self.activation == "lrelu":
# StyleGAN2-style, use with toRGB
rgb = torch.nn.functional.leaky_relu(rgb, 0.2,
inplace=True) * math.sqrt(2)
return {'rgb': rgb, 'sigma': sigma}
class OSGDecoderFlexicube(OSGDecoder):
# https://github.com/TencentARC/InstantMesh/blob/0a64425c6d390afa40128132cec42cd5c6408bbf/src/models/renderer/synthesizer_mesh.py#L15
def __init__(self, n_features, options, hidden_dim: int = 64, num_layers: int = 4, activation: nn.Module = nn.ReLU):
super().__init__(n_features, options)
# self.net_sdf = nn.Sequential(
# nn.Linear(3 * n_features, hidden_dim),
# activation(),
# *itertools.chain(*[[
# nn.Linear(hidden_dim, hidden_dim),
# activation(),
# ] for _ in range(num_layers - 2)]),
# nn.Linear(hidden_dim, 1),
# )
# self.net_rgb = nn.Sequential(
# nn.Linear(3 * n_features, hidden_dim),
# activation(),
# *itertools.chain(*[[
# nn.Linear(hidden_dim, hidden_dim),
# activation(),
# ] for _ in range(num_layers - 2)]),
# nn.Linear(hidden_dim, 3),
# )
# ! sdf and rgb prediction adopts old tradition, softplus here
# TODO, load pre-trained model weights
self.net_sdf = torch.nn.Sequential(
FullyConnectedLayer(n_features,
self.hidden_dim,
lr_multiplier=options['decoder_lr_mul']),
torch.nn.Softplus(),
FullyConnectedLayer(self.hidden_dim,
1,
lr_multiplier=options['decoder_lr_mul']))
self.net_rgb = torch.nn.Sequential(
FullyConnectedLayer(n_features,
self.hidden_dim,
lr_multiplier=options['decoder_lr_mul']),
torch.nn.Softplus(),
FullyConnectedLayer(self.hidden_dim,
options['decoder_output_dim'],
lr_multiplier=options['decoder_lr_mul']))
# ! for following MLP, use new behaviour
self.net_deformation = nn.Sequential(
nn.Linear(3 * n_features, hidden_dim),
activation(),
*itertools.chain(*[[
nn.Linear(hidden_dim, hidden_dim),
activation(),
] for _ in range(num_layers - 2)]),
nn.Linear(hidden_dim, 3),
)
self.net_weight = nn.Sequential(
nn.Linear(8 * 3 * n_features, hidden_dim),
activation(),
*itertools.chain(*[[
nn.Linear(hidden_dim, hidden_dim),
activation(),
] for _ in range(num_layers - 2)]),
nn.Linear(hidden_dim, 21),
)
# init all bias to zero
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.zeros_(m.bias)
# def forward(self, sampled_features, ray_directions):
# # Aggregate features
# sampled_features = sampled_features.mean(1)
# x = sampled_features
# N, M, C = x.shape
# x = x.view(N * M, C)
# x = self.net(x)
# x = x.view(N, M, -1)
# rgb = x[..., 1:]
# sigma = x[..., 0:1]
# if self.activation == "sigmoid":
# # Original EG3D
# rgb = torch.sigmoid(rgb) * (1 + 2 * 0.001) - 0.001
# elif self.activation == "lrelu":
# # StyleGAN2-style, use with toRGB
# rgb = torch.nn.functional.leaky_relu(rgb, 0.2,
# inplace=True) * math.sqrt(2)
# return {'rgb': rgb, 'sigma': sigma}
def get_geometry_prediction(self, sampled_features, flexicubes_indices):
_N, n_planes, _M, _C = sampled_features.shape
sdf = self.net_sdf(sampled_features.mean(1)) # for compat issue
sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C)
deformation = self.net_deformation(sampled_features)
grid_features = torch.index_select(input=sampled_features, index=flexicubes_indices.reshape(-1), dim=1)
grid_features = grid_features.reshape(
sampled_features.shape[0], flexicubes_indices.shape[0], flexicubes_indices.shape[1] * sampled_features.shape[-1])
weight = self.net_weight(grid_features) * 0.1
return sdf, deformation, weight
def get_texture_prediction(self, sampled_features):
_N, n_planes, _M, _C = sampled_features.shape
# sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C)
sampled_features = sampled_features.mean(1)
rgb = self.net_rgb(sampled_features) # sigmoid feat by default
rgb = torch.sigmoid(rgb)*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF
return rgb
class LRMOSGDecoder(nn.Module):
"""
Triplane decoder that gives RGB and sigma values from sampled features.
Using ReLU here instead of Softplus in the original implementation.
Reference:
EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L112
"""
def __init__(self, n_features: int,
hidden_dim: int = 64, num_layers: int = 4, activation: nn.Module = nn.ReLU):
super().__init__()
self.decoder_output_dim = 3
self.net = nn.Sequential(
nn.Linear(3 * n_features, hidden_dim),
activation(),
*itertools.chain(*[[
nn.Linear(hidden_dim, hidden_dim),
activation(),
] for _ in range(num_layers - 2)]),
nn.Linear(hidden_dim, 1 + self.decoder_output_dim),
)
# init all bias to zero
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.zeros_(m.bias)
def forward(self, sampled_features, ray_directions):
# Aggregate features by mean
# sampled_features = sampled_features.mean(1)
# Aggregate features by concatenation
_N, n_planes, _M, _C = sampled_features.shape
sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C)
x = sampled_features
N, M, C = x.shape
x = x.contiguous().view(N*M, C)
x = self.net(x)
x = x.view(N, M, -1)
rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF
sigma = x[..., 0:1]
return {'rgb': rgb, 'sigma': sigma}
class Triplane(torch.nn.Module):
def __init__(
self,
c_dim=25, # Conditioning label (C) dimensionality.
img_resolution=128, # Output resolution.
img_channels=3, # Number of output color channels.
out_chans=96,
triplane_size=224,
rendering_kwargs={},
decoder_in_chans=32,
decoder_output_dim=32,
sr_num_fp16_res=0,
sr_kwargs={},
create_triplane=False, # for overfitting single instance study
bcg_synthesis_kwargs={},
lrm_decoder=False,
):
super().__init__()
self.c_dim = c_dim
self.img_resolution = img_resolution # TODO
self.img_channels = img_channels
self.triplane_size = triplane_size
self.decoder_in_chans = decoder_in_chans
self.out_chans = out_chans
self.renderer = ImportanceRenderer()
if 'PatchRaySampler' in rendering_kwargs:
self.ray_sampler = PatchRaySampler()
else:
self.ray_sampler = RaySampler()
if lrm_decoder:
self.decoder = LRMOSGDecoder(
decoder_in_chans,)
else:
self.decoder = OSGDecoder(
decoder_in_chans,
{
'decoder_lr_mul': rendering_kwargs.get('decoder_lr_mul', 1),
# 'decoder_output_dim': 32
'decoder_output_dim': decoder_output_dim
})
self.neural_rendering_resolution = img_resolution # TODO
# self.neural_rendering_resolution = 128 # TODO
self.rendering_kwargs = rendering_kwargs
self.create_triplane = create_triplane
if create_triplane:
self.planes = nn.Parameter(torch.randn(1, out_chans, 256, 256))
if bool(sr_kwargs): # check whether empty
assert decoder_in_chans == decoder_output_dim, 'tradition'
if rendering_kwargs['superresolution_module'] in [
'torch_utils.components.PixelUnshuffleUpsample',
'torch_utils.components.NearestConvSR',
'torch_utils.components.NearestConvSR_Residual'
]:
self.superresolution = dnnlib.util.construct_class_by_name(
class_name=rendering_kwargs['superresolution_module'],
# * for PixelUnshuffleUpsample
sr_ratio=2, # 2x SR, 128 -> 256
output_dim=decoder_output_dim,
num_out_ch=3,
)
else:
self.superresolution = dnnlib.util.construct_class_by_name(
class_name=rendering_kwargs['superresolution_module'],
# * for stylegan upsample
channels=decoder_output_dim,
img_resolution=img_resolution,
sr_num_fp16_res=sr_num_fp16_res,
sr_antialias=rendering_kwargs['sr_antialias'],
**sr_kwargs)
else:
self.superresolution = None
self.bcg_synthesis = None
# * pure reconstruction
def forward(
self,
planes=None,
# img,
c=None,
ws=None,
ray_origins=None,
ray_directions=None,
z_bcg=None,
neural_rendering_resolution=None,
update_emas=False,
cache_backbone=False,
use_cached_backbone=False,
return_meta=False,
return_raw_only=False,
sample_ray_only=False,
fg_bbox=None,
**synthesis_kwargs):
cam2world_matrix = c[:, :16].reshape(-1, 4, 4)
# cam2world_matrix = torch.eye(4, device=c.device).unsqueeze(0).repeat_interleave(c.shape[0], dim=0)
# c[:, :16] = cam2world_matrix.view(-1, 16)
intrinsics = c[:, 16:25].reshape(-1, 3, 3)
if neural_rendering_resolution is None:
neural_rendering_resolution = self.neural_rendering_resolution
else:
self.neural_rendering_resolution = neural_rendering_resolution
if ray_directions is None: # when output video
H = W = self.neural_rendering_resolution
# Create a batch of rays for volume rendering
# ray_origins, ray_directions, ray_bboxes = self.ray_sampler(
# cam2world_matrix, intrinsics, neural_rendering_resolution)
if sample_ray_only: # ! for sampling
ray_origins, ray_directions, ray_bboxes = self.ray_sampler(
cam2world_matrix, intrinsics,
self.rendering_kwargs.get( 'patch_rendering_resolution' ),
self.neural_rendering_resolution, fg_bbox)
# for patch supervision
ret_dict = {
'ray_origins': ray_origins,
'ray_directions': ray_directions,
'ray_bboxes': ray_bboxes,
}
return ret_dict
else: # ! for rendering
ray_origins, ray_directions, _ = self.ray_sampler(
cam2world_matrix, intrinsics, self.neural_rendering_resolution,
self.neural_rendering_resolution)
else:
assert ray_origins is not None
H = W = int(ray_directions.shape[1]**
0.5) # dynamically set patch resolution
# ! match the batch size, if not returned
if planes is None:
assert self.planes is not None
planes = self.planes.repeat_interleave(c.shape[0], dim=0)
return_sampling_details_flag = self.rendering_kwargs.get(
'return_sampling_details_flag', False)
if return_sampling_details_flag:
return_meta = True
# Create triplanes by running StyleGAN backbone
N, M, _ = ray_origins.shape
# Reshape output into three 32-channel planes
if planes.shape[1] == 3 * 2 * self.decoder_in_chans:
# if isinstance(planes, tuple):
# N *= 2
triplane_bg = True
# planes = torch.cat(planes, 0) # inference in parallel
# ray_origins = ray_origins.repeat(2,1,1)
# ray_directions = ray_directions.repeat(2,1,1)
else:
triplane_bg = False
# assert not triplane_bg
# ! hard coded, will fix later
# if planes.shape[1] == 3 * self.decoder_in_chans:
# else:
# planes = planes.view(len(planes), 3, self.decoder_in_chans,
planes = planes.reshape(
len(planes),
3,
-1, # ! support background plane
planes.shape[-2],
planes.shape[-1]) # BS 96 256 256
# Perform volume rendering
rendering_details = self.renderer(planes,
self.decoder,
ray_origins,
ray_directions,
self.rendering_kwargs,
return_meta=return_meta)
feature_samples, depth_samples, weights_samples = (
rendering_details[k]
for k in ['feature_samples', 'depth_samples', 'weights_samples'])
if return_sampling_details_flag:
shape_synthesized = rendering_details['shape_synthesized']
else:
shape_synthesized = None
# Reshape into 'raw' neural-rendered image
feature_image = feature_samples.permute(0, 2, 1).reshape(
N, feature_samples.shape[-1], H,
W).contiguous() # B 32 H W, in [-1,1]
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)
weights_samples = weights_samples.permute(0, 2, 1).reshape(N, 1, H, W)
# Generate Background
# if self.bcg_synthesis:
# # bg composition
# # if self.decoder.activation == "sigmoid":
# # feature_image = feature_image * 2 - 1 # Scale to (-1, 1), taken from ray marcher
# assert isinstance(
# z_bcg, torch.Tensor
# ) # 512 latents after reparmaterization, reuse the name
# # ws_bcg = ws[:,:self.bcg_synthesis.num_ws] if ws_bcg is None else ws_bcg[:,:self.bcg_synthesis.num_ws]
# with torch.autocast(device_type='cuda',
# dtype=torch.float16,
# enabled=False):
# ws_bcg = self.bcg_mapping(z_bcg, c=None) # reuse the name
# if ws_bcg.size(1) < self.bcg_synthesis.num_ws:
# ws_bcg = torch.cat([
# ws_bcg, ws_bcg[:, -1:].repeat(
# 1, self.bcg_synthesis.num_ws - ws_bcg.size(1), 1)
# ], 1)
# bcg_image = self.bcg_synthesis(ws_bcg,
# update_emas=update_emas,
# **synthesis_kwargs)
# bcg_image = torch.nn.functional.interpolate(
# bcg_image,
# size=feature_image.shape[2:],
# mode='bilinear',
# align_corners=False,
# antialias=self.rendering_kwargs['sr_antialias'])
# feature_image = feature_image + (1 - weights_samples) * bcg_image
# # Generate Raw image
# assert self.torgb
# rgb_image = self.torgb(feature_image,
# ws_bcg[:, -1],
# fused_modconv=False)
# rgb_image = rgb_image.to(dtype=torch.float32,
# memory_format=torch.contiguous_format)
# # st()
# else:
mask_image = weights_samples * (1 + 2 * 0.001) - 0.001
if triplane_bg:
# true_bs = N // 2
# weights_samples = weights_samples[:true_bs]
# mask_image = mask_image[:true_bs]
# feature_image = feature_image[:true_bs] * mask_image + feature_image[true_bs:] * (1-mask_image) # the first is foreground
# depth_image = depth_image[:true_bs]
# ! composited colors
# rgb_final = (
# 1 - fg_ret_dict['weights']
# ) * bg_ret_dict['rgb_final'] + fg_ret_dict[
# 'feature_samples'] # https://github.com/SizheAn/PanoHead/blob/17ad915941c7e2703d5aa3eb5ff12eac47c90e53/training/triplane.py#L127C45-L127C64
# ret_dict.update({
# 'feature_samples': rgb_final,
# })
# st()
feature_image = (1 - mask_image) * rendering_details[
'bg_ret_dict']['rgb_final'] + feature_image
rgb_image = feature_image[:, :3]
# # Run superresolution to get final image
if self.superresolution is not None and not return_raw_only:
# assert ws is not None, 'feed in [cls] token here for SR module'
if ws is not None and ws.ndim == 2:
ws = ws.unsqueeze(
1)[:, -1:, :] # follow stylegan tradition, B, N, C
sr_image = self.superresolution(
rgb=rgb_image,
x=feature_image,
base_x=rgb_image,
ws=ws, # only use the last layer
noise_mode=self.
rendering_kwargs['superresolution_noise_mode'], # none
**{
k: synthesis_kwargs[k]
for k in synthesis_kwargs.keys() if k != 'noise_mode'
})
else:
# sr_image = rgb_image
sr_image = None
if shape_synthesized is not None:
shape_synthesized.update({
'image_depth': depth_image,
}) # for 3D loss easy computation, wrap all 3D in a single dict
ret_dict = {
'feature_image': feature_image,
# 'image_raw': feature_image[:, :3],
'image_raw': rgb_image,
'image_depth': depth_image,
'weights_samples': weights_samples,
# 'silhouette': mask_image,
# 'silhouette_normalized_3channel': (mask_image*2-1).repeat_interleave(3,1), # N 3 H W
'shape_synthesized': shape_synthesized,
"image_mask": mask_image,
}
if sr_image is not None:
ret_dict.update({
'image_sr': sr_image,
})
if return_meta:
ret_dict.update({
'feature_volume':
rendering_details['feature_volume'],
'all_coords':
rendering_details['all_coords'],
'weights':
rendering_details['weights'],
})
return ret_dict
class Triplane_fg_bg_plane(Triplane):
# a separate background plane
def __init__(self,
c_dim=25,
img_resolution=128,
img_channels=3,
out_chans=96,
triplane_size=224,
rendering_kwargs={},
decoder_in_chans=32,
decoder_output_dim=32,
sr_num_fp16_res=0,
sr_kwargs={},
bcg_synthesis_kwargs={}):
super().__init__(c_dim, img_resolution, img_channels, out_chans,
triplane_size, rendering_kwargs, decoder_in_chans,
decoder_output_dim, sr_num_fp16_res, sr_kwargs,
bcg_synthesis_kwargs)
self.bcg_decoder = Decoder(
ch=64, # half channel size
out_ch=32,
# ch_mult=(1, 2, 4),
ch_mult=(1, 2), # use res=64 for now
num_res_blocks=2,
dropout=0.0,
attn_resolutions=(),
z_channels=4,
resolution=64,
in_channels=3,
)
# * pure reconstruction
def forward(
self,
planes,
bg_plane,
# img,
c,
ws=None,
z_bcg=None,
neural_rendering_resolution=None,
update_emas=False,
cache_backbone=False,
use_cached_backbone=False,
return_meta=False,
return_raw_only=False,
**synthesis_kwargs):
# ! match the batch size
if planes is None:
assert self.planes is not None
planes = self.planes.repeat_interleave(c.shape[0], dim=0)
return_sampling_details_flag = self.rendering_kwargs.get(
'return_sampling_details_flag', False)
if return_sampling_details_flag:
return_meta = True
cam2world_matrix = c[:, :16].reshape(-1, 4, 4)
# cam2world_matrix = torch.eye(4, device=c.device).unsqueeze(0).repeat_interleave(c.shape[0], dim=0)
# c[:, :16] = cam2world_matrix.view(-1, 16)
intrinsics = c[:, 16:25].reshape(-1, 3, 3)
if neural_rendering_resolution is None:
neural_rendering_resolution = self.neural_rendering_resolution
else:
self.neural_rendering_resolution = neural_rendering_resolution
H = W = self.neural_rendering_resolution
# Create a batch of rays for volume rendering
ray_origins, ray_directions, _ = self.ray_sampler(
cam2world_matrix, intrinsics, neural_rendering_resolution)
# Create triplanes by running StyleGAN backbone
N, M, _ = ray_origins.shape
# # Reshape output into three 32-channel planes
# if planes.shape[1] == 3 * 2 * self.decoder_in_chans:
# # if isinstance(planes, tuple):
# # N *= 2
# triplane_bg = True
# # planes = torch.cat(planes, 0) # inference in parallel
# # ray_origins = ray_origins.repeat(2,1,1)
# # ray_directions = ray_directions.repeat(2,1,1)
# else:
# triplane_bg = False
# assert not triplane_bg
planes = planes.view(
len(planes),
3,
-1, # ! support background plane
planes.shape[-2],
planes.shape[-1]) # BS 96 256 256
# Perform volume rendering
rendering_details = self.renderer(planes,
self.decoder,
ray_origins,
ray_directions,
self.rendering_kwargs,
return_meta=return_meta)
feature_samples, depth_samples, weights_samples = (
rendering_details[k]
for k in ['feature_samples', 'depth_samples', 'weights_samples'])
if return_sampling_details_flag:
shape_synthesized = rendering_details['shape_synthesized']
else:
shape_synthesized = None
# Reshape into 'raw' neural-rendered image
feature_image = feature_samples.permute(0, 2, 1).reshape(
N, feature_samples.shape[-1], H,
W).contiguous() # B 32 H W, in [-1,1]
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)
weights_samples = weights_samples.permute(0, 2, 1).reshape(N, 1, H, W)
bcg_image = self.bcg_decoder(bg_plane)
bcg_image = torch.nn.functional.interpolate(
bcg_image,
size=feature_image.shape[2:],
mode='bilinear',
align_corners=False,
antialias=self.rendering_kwargs['sr_antialias'])
mask_image = weights_samples * (1 + 2 * 0.001) - 0.001
# ! fuse fg/bg model output
feature_image = feature_image + (1 - weights_samples) * bcg_image
rgb_image = feature_image[:, :3]
# # Run superresolution to get final image
if self.superresolution is not None and not return_raw_only:
# assert ws is not None, 'feed in [cls] token here for SR module'
if ws is not None and ws.ndim == 2:
ws = ws.unsqueeze(
1)[:, -1:, :] # follow stylegan tradition, B, N, C
sr_image = self.superresolution(
rgb=rgb_image,
x=feature_image,
base_x=rgb_image,
ws=ws, # only use the last layer
noise_mode=self.
rendering_kwargs['superresolution_noise_mode'], # none
**{
k: synthesis_kwargs[k]
for k in synthesis_kwargs.keys() if k != 'noise_mode'
})
else:
# sr_image = rgb_image
sr_image = None
if shape_synthesized is not None:
shape_synthesized.update({
'image_depth': depth_image,
}) # for 3D loss easy computation, wrap all 3D in a single dict
ret_dict = {
'feature_image': feature_image,
# 'image_raw': feature_image[:, :3],
'image_raw': rgb_image,
'image_depth': depth_image,
'weights_samples': weights_samples,
# 'silhouette': mask_image,
# 'silhouette_normalized_3channel': (mask_image*2-1).repeat_interleave(3,1), # N 3 H W
'shape_synthesized': shape_synthesized,
"image_mask": mask_image,
}
if sr_image is not None:
ret_dict.update({
'image_sr': sr_image,
})
if return_meta:
ret_dict.update({
'feature_volume':
rendering_details['feature_volume'],
'all_coords':
rendering_details['all_coords'],
'weights':
rendering_details['weights'],
})
return ret_dict
class TriplaneFlexiCube(Triplane):
def __init__(self, c_dim=25, img_resolution=128, img_channels=3, out_chans=96, triplane_size=224, rendering_kwargs={}, decoder_in_chans=32, decoder_output_dim=32, sr_num_fp16_res=0, sr_kwargs={},
create_triplane=False, # for overfitting single instance study
bcg_synthesis_kwargs={},
lrm_decoder=False,
):
super().__init__(c_dim, img_resolution, img_channels, out_chans, triplane_size, rendering_kwargs, decoder_in_chans, decoder_output_dim, sr_num_fp16_res, sr_kwargs, bcg_synthesis_kwargs, lrm_decoder=lrm_decoder, create_triplane=create_triplane)
# https://github.com/TencentARC/InstantMesh/blob/0a64425c6d390afa40128132cec42cd5c6408bbf/src/models/renderer/synthesizer_mesh.py#L93
def get_geometry_prediction(self, planes, sample_coordinates, flexicubes_indices):
plane_axes = self.plane_axes.to(planes.device)
sampled_features = sample_from_planes(
plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=self.rendering_kwargs['box_warp'])
sdf, deformation, weight = self.decoder.get_geometry_prediction(sampled_features, flexicubes_indices)
return sdf, deformation, weight
def get_texture_prediction(self, planes, sample_coordinates):
plane_axes = self.plane_axes.to(planes.device)
sampled_features = sample_from_planes(
plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=self.rendering_kwargs['box_warp'])
rgb = self.decoder.get_texture_prediction(sampled_features)
return rgb |