File size: 20,289 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
"""
Train a diffusion model on images.
"""
# import imageio
from pathlib import Path
import torchvision
import kornia
import lz4.frame
import gzip
import random
import json
import sys
import os
import lmdb
from tqdm import tqdm

sys.path.append('.')
import torch.distributed as dist
import pytorch3d.ops
import pickle
import traceback
from PIL import Image
import torch as th
if th.cuda.is_available():
    from xformers.triton import FusedLayerNorm as LayerNorm
import torch.multiprocessing as mp
import lzma
import webdataset as wds
import numpy as np

import point_cloud_utils as pcu
from torch.utils.data import DataLoader, Dataset
import imageio.v3 as iio

import argparse
import dnnlib
from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
    args_to_dict,
    add_dict_to_argparser,
)
# from nsr.train_util import TrainLoop3DRec as TrainLoop
from nsr.train_nv_util import TrainLoop3DRecNV, TrainLoop3DRec, TrainLoop3DRecNVPatch
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default
from datasets.shapenet import load_data, load_data_for_lmdb, load_eval_data, load_memory_data
from nsr.losses.builder import E3DGELossClass
from datasets.eg3d_dataset import init_dataset_kwargs
from nsr.volumetric_rendering.ray_sampler import RaySampler

# from .lmdb_create import encode_and_compress_image


def encode_and_compress_image(inp_array, is_image=False, compress=True):
    # Read the image using imageio
    # image = imageio.v3.imread(image_path)

    # Convert the image to bytes
    # with io.BytesIO() as byte_buffer:
    #     imageio.imsave(byte_buffer, image, format="png")
    #     image_bytes = byte_buffer.getvalue()
    if is_image:
        inp_bytes = iio.imwrite("<bytes>", inp_array, extension=".png")
    else:
        inp_bytes = inp_array.tobytes()

    # Compress the image data using gzip
    if compress:
        # compressed_data = gzip.compress(inp_bytes)
        compressed_data = lz4.frame.compress(inp_bytes)
        return compressed_data
    else:
        return inp_bytes


from pdb import set_trace as st
import bz2

# th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16


def training_loop(args):
    # def training_loop(args):
    # dist_util.setup_dist(args)
    # th.autograd.set_detect_anomaly(True) # type: ignore
    th.autograd.set_detect_anomaly(False)  # type: ignore
    # https://blog.csdn.net/qq_41682740/article/details/126304613

    SEED = args.seed

    # dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count())
    # logger.log(f"{args.local_rank=} init complete, seed={SEED}")
    # th.cuda.set_device(args.local_rank)
    th.cuda.empty_cache()

    # * deterministic algorithms flags
    th.cuda.manual_seed_all(SEED)
    np.random.seed(SEED)
    random.seed(SEED)

    ray_sampler = RaySampler()

    # logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"])
    logger.configure(dir=args.logdir)

    logger.log("creating encoder and NSR decoder...")
    # device = dist_util.dev()
    # device = th.device("cuda", args.local_rank)

    # shared eg3d opts
    opts = eg3d_options_default()

    if args.sr_training:
        args.sr_kwargs = dnnlib.EasyDict(
            channel_base=opts.cbase,
            channel_max=opts.cmax,
            fused_modconv_default='inference_only',
            use_noise=True
        )  # ! close noise injection? since noise_mode='none' in eg3d

    if args.objv_dataset:
        from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_data_for_lmdb
    else:  # shapenet
        from datasets.shapenet import load_data, load_eval_data, load_memory_data, load_data_for_lmdb

    # auto_encoder = create_3DAE_model(
    #     **args_to_dict(args,
    #                    encoder_and_nsr_defaults().keys()))
    # auto_encoder.to(device)
    # auto_encoder.train()

    logger.log("creating data loader...")
    # data = load_data(
    # st()
    # if args.overfitting:
    #     data = load_memory_data(
    #         file_path=args.data_dir,
    #         batch_size=args.batch_size,
    #         reso=args.image_size,
    #         reso_encoder=args.image_size_encoder,  # 224 -> 128
    #         num_workers=args.num_workers,
    #         # load_depth=args.depth_lambda > 0
    #         load_depth=True  # for evaluation
    #     )
    # else:
    if args.cfg in ('afhq', 'ffhq'):
        # ! load data
        logger.log("creating eg3d data loader...")
        training_set_kwargs, dataset_name = init_dataset_kwargs(
            data=args.data_dir,
            class_name='datasets.eg3d_dataset.ImageFolderDatasetLMDB',
            reso_gt=args.image_size)  # only load pose here
        # if args.cond and not training_set_kwargs.use_labels:
        # raise Exception('check here')

        # training_set_kwargs.use_labels = args.cond
        training_set_kwargs.use_labels = True
        training_set_kwargs.xflip = False
        training_set_kwargs.random_seed = SEED
        # training_set_kwargs.max_size = args.dataset_size
        # desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}'

        # * construct ffhq/afhq dataset
        training_set = dnnlib.util.construct_class_by_name(
            **training_set_kwargs)  # subclass of training.dataset.Dataset
        dataset_size = len(training_set)

        # training_set_sampler = InfiniteSampler(
        #     dataset=training_set,
        #     rank=dist_util.get_rank(),
        #     num_replicas=dist_util.get_world_size(),
        #     seed=SEED)

        data = DataLoader(
            training_set,
            shuffle=False,
            batch_size=1,
            num_workers=16,
            drop_last=False,
            # prefetch_factor=2,
            pin_memory=True,
            persistent_workers=True,
        )

    else:
        # data, dataset_name, dataset_size, dataset = load_data_for_lmdb(
        data, dataset_name, dataset_size = load_data_for_lmdb(
            file_path=args.data_dir,
            batch_size=args.batch_size,
            reso=args.image_size,
            reso_encoder=args.image_size_encoder,  # 224 -> 128
            num_workers=args.num_workers,
            load_depth=True,
            preprocess=None,
            dataset_size=args.dataset_size,
            trainer_name=args.trainer_name,
            shuffle_across_cls=args.shuffle_across_cls,
            wds_split=args.wds_split,
            four_view_for_latent=True
            # wds_output_path=os.path.join(logger.get_dir(), f'wds-%06d.tar')
            # load_depth=True # for evaluation
        )
    #     if args.pose_warm_up_iter > 0:
    #         overfitting_dataset = load_memory_data(
    #             file_path=args.data_dir,
    #             batch_size=args.batch_size,
    #             reso=args.image_size,
    #             reso_encoder=args.image_size_encoder,  # 224 -> 128
    #             num_workers=args.num_workers,
    #             # load_depth=args.depth_lambda > 0
    #             load_depth=True  # for evaluation
    #         )
    #         data = [data, overfitting_dataset, args.pose_warm_up_iter]
    # eval_data = load_eval_data(
    #     file_path=args.eval_data_dir,
    #     batch_size=args.eval_batch_size,
    #     reso=args.image_size,
    #     reso_encoder=args.image_size_encoder,  # 224 -> 128
    #     num_workers=args.num_workers,
    #     load_depth=True,  # for evaluation
    #     preprocess=auto_encoder.preprocess)
    args.img_size = [args.image_size_encoder]
    # try dry run
    # batch = next(data)
    # batch = None

    # logger.log("creating model and diffusion...")

    # let all processes sync up before starting with a new epoch of training
    dist_util.synchronize()

    # schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)

    opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys()))
    # opt.max_depth, opt.min_depth = args.rendering_kwargs.ray_end, args.rendering_kwargs.ray_start
    # loss_class = E3DGELossClass(device, opt).to(device)

    # writer = SummaryWriter() # TODO, add log dir

    logger.log("training...")

    # TrainLoop = {
    #     'input_rec': TrainLoop3DRec,
    #     'nv_rec': TrainLoop3DRecNV,
    #     'nv_rec_patch': TrainLoop3DRecNVPatch,
    # }[args.trainer_name]

    # TrainLoop(rec_model=auto_encoder,
    #           loss_class=loss_class,
    #           data=data,
    #           eval_data=eval_data,
    #           **vars(args)).run_loop()  # ! overfitting

    # Function to compress an image using gzip
    # def compress_image_gzip(image_path):
    # def encode_and_compress_image(inp_array, is_image=False):
    #     # Read the image using imageio
    #     # image = imageio.v3.imread(image_path)

    #     # Convert the image to bytes
    #     # with io.BytesIO() as byte_buffer:
    #     #     imageio.imsave(byte_buffer, image, format="png")
    #     #     image_bytes = byte_buffer.getvalue()
    #     if is_image:
    #         inp_bytes = iio.imwrite("<bytes>", inp_array, extension=".png")
    #     else:
    #         inp_bytes = inp_array.tobytes()

    #     # Compress the image data using gzip
    #     compressed_data = gzip.compress(inp_bytes)

    #     return compressed_data

    def save_pcd_from_depth(dataset_loader, dataset_size, lmdb_path,
                            start_shard, wds_split):
        """
        Convert a PyTorch dataset to LMDB format.

        Parameters:
        - dataset: PyTorch dataset
        - lmdb_path: Path to store the LMDB database
        """
        # env = lmdb.open(lmdb_path, map_size=1024 ** 4, readahead=False)  # Adjust map_size based on your dataset size
        # sink = wds.ShardWriter(lmdb_path, start_shard=start_shard)

        # with env.begin(write=True) as txn:

        # with env.begin(write=True) as txn:
        # txn.put("length".encode("utf-8"), str(dataset_size).encode("utf-8"))

        # K = 10000 # fps K
        K = 4096 # fps K
        # K = 128*128*2 # fps K, 32768
        # K = 1024*24 # 20480
        # K = 4096 # fps K

        # if True:

        # try:
        for idx, sample in enumerate(tqdm(dataset_loader)):

            # pass
            # remove the batch index of returned dict sample

            sample_ins = sample.pop('ins')
            # !!! add all()
            assert all([ sample_ins[i] == sample_ins[0] for i in range(0, len(sample_ins)) ]), sample_ins  # check the batch is the same instnace

            img_size = sample['raw_img'].shape[2]

            pcd_path = Path(f'{logger.get_dir()}/fps-pcd/{sample_ins[0]}')

            if (pcd_path / f'fps-{K}.ply').exists():
                continue

            pcd_path.mkdir(parents=True, exist_ok=True)

            # sample = {
            #     # k:v.squeeze(0).cpu().numpy() if isinstance(v, th.Tensor) else v[0] for k, v in sample.items()
            #     k:v.cpu().numpy() if isinstance(v, th.Tensor) else v for k, v in sample.items()
            #     # k:v.cpu().numpy() if isinstance(v, torch.Tensor) else v for k, v in sample.items()
            # }

            B = sample['c'].shape[0]

            cam2world_matrix = sample['c'][:, :16].reshape(B, 4, 4)
            intrinsics = sample['c'][:, 16:25].reshape(B, 3, 3)

            ray_origins, ray_directions = ray_sampler(  # shape: 
                cam2world_matrix, intrinsics, img_size)[:2]

            micro = sample

            # self.gs.output_size,)[:2]
            # depth = rearrange(micro['depth'], '(B V) H W -> ')
            # depth_128 = th.nn.functional.interpolate(
            #     micro['depth'].unsqueeze(1), (128, 128),
            #     mode='nearest'
            # )[:, 0]  # since each view has 128x128 Gaussians
            # depth = depth_128.reshape(B * V, -1).unsqueeze(-1)

            # fg_mask = (micro['depth'] > 0).unsqueeze(1).float()

            # fg_mask = micro['alpha_mask'].unsqueeze(1).float() # anti-alias? B 1 H W
            fg_mask = (micro['alpha_mask'] == 1).unsqueeze(1).float() # anti-alias? B 1 H W

            kernel = th.tensor([[0, 1, 0], [1, 1, 1], [0, 1,
                                                       0]]).to(fg_mask.device)

            # ! erode. but still some noise...
            '''
            erode_mask = kornia.morphology.erosion(fg_mask, kernel)  # B 1 H W
            # torchvision.utils.save_image(fg_mask.float()*2-1,'mask.jpg',  value_range=(-1,1), normalize=True)
            # torchvision.utils.save_image(erode_mask.float()*2-1,'erode_mask.jpg',  value_range=(-1,1), normalize=True)

            fg_mask = (erode_mask==1).float().reshape(B, -1).unsqueeze(-1) > 0 #
            # '''
            # fg_mask = fg_mask.reshape(B, -1).unsqueeze(-1) == 1  # ! for some failed data
            # ! no erode:
            fg_mask = fg_mask.reshape(B, -1).unsqueeze(-1) > 0  # ! for some failed data

            depth = micro['depth'].reshape(B, -1).unsqueeze(-1)
            depth = th.where(depth < 1.05, 0, depth)  # filter outlier
            depth[depth == 0] = 1e10  # so that rays_o will not appear in the final pcd.

            # fg_mask = depth>0

            # fg_mask = th.nn.functional.interpolate(
            #     micro['depth_mask'].unsqueeze(1).to(th.uint8),
            #     (128, 128),
            #     mode='nearest').squeeze(1)  # B*V H W
            # fg_mask = fg_mask.reshape(B * V, -1).unsqueeze(-1)


            # gt_pos = gt_pos[gt_pos.nonzero(as_tuple=True)].reshape(-1, 3) # return non-zero points for fps sampling

            # pcu.save_mesh_v(f'tmp/gt-512.ply', gt_pos.detach().cpu().numpy(),)

            # fps sampling
            try:
                
                gt_pos = ray_origins + depth * ray_directions  # BV HW 3, already in the world space
                gt_pos = fg_mask * gt_pos  # remove ray_origins when depth=0
                # gt_pos = gt_pos[[8,16,24,25,26, 27, 31, 35]]
                # gt_pos = gt_pos[[5,10,15,20,24,25,26]]
                # gt_pos = gt_pos[[4, 12, 20, 25]]
                gt_pos = gt_pos[:]
                # gt_pos = gt_pos[[25,26]]
                gt_pos = gt_pos.reshape(-1, 3).to(dist_util.dev())
                gt_pos = gt_pos.clip(-0.45, 0.45)
                gt_pos = th.where(gt_pos.abs()==0.45, 0, gt_pos) # no boundary here? Yes.

                # ! filter the zero points together here 

                nonzero_mask = (gt_pos != 0).all(dim=-1)  # Shape: (N, 3)
                nonzero_gt_pos = gt_pos[nonzero_mask] 

                fps_points = pytorch3d.ops.sample_farthest_points(
                    nonzero_gt_pos.unsqueeze(0), K=K)[0]

                pcu.save_mesh_v(
                    str(pcd_path / f'fps-{K}.ply'),
                    fps_points[0].detach().cpu().numpy(),
                )

                assert (pcd_path / f'fps-{K}.ply').exists()
            
            except Exception as e:

                st()
                pass

                print(pcd_path, 'save failed: ', e)
            
            # ! debug projection matrix

            # def pcd_to_homo(pcd):
            #     return th.cat([pcd, th.ones_like(pcd[..., 0:1])], -1)
            
            # st()

            # proj_point = th.inverse(cam2world_matrix[0]).to(fps_points) @ pcd_to_homo(fps_points[0]).permute(1, 0)
            # # proj_point = th.inverse(cam2world_matrix[0]).to(fps_points) @ pcd_to_homo((ray_origins + depth * ray_directions)[0].to(fps_points)).permute(1, 0)
            # proj_point[:2, ...] /= proj_point[2, ...]
            # proj_point[2, ...] = 1 # homo


            # proj_point = intrinsics[0].to(fps_points) @ proj_point[:3]
            # proj_point = proj_point.permute(1,0)[..., :2] # 768 4
            # st()

            # torchvision.utils.save_image(micro['raw_img'][::5].permute(0,3,1,2).float()/127.5-1,'raw.jpg',  value_range=(-1,1), normalize=True)

            # # encode batch images/depths/strings?  no need to encode ins/fname here; just save the caption

            # # sample = dataset_loader[idx]
            # compressed_sample = {}
            # sample['ins'] = sample_ins[0]
            # sample['caption'] = sample.pop('caption')[0]

            # for k, v in sample.items():

            #     # key = f'{idx}-{k}'.encode('utf-8')

            #     if 'img' in k: # only bytes required? laod the 512 depth bytes only.
            #         v = encode_and_compress_image(v, is_image=True, compress=True)
            #         # v = encode_and_compress_image(v, is_image=True, compress=False)
            #     # elif 'depth' in k:
            #     elif isinstance(v, str):
            #         v = v.encode('utf-8') # caption / instance name
            #     else: # regular bytes encoding
            #         v = encode_and_compress_image(v.astype(np.float32), is_image=False, compress=True)
            #         # v = encode_and_compress_image(v.astype(np.float32), is_image=False, compress=False)

            #     compressed_sample[k] = v

            # # st() # TODO, add .gz for compression after pipeline done
            # sink.write({
            #     "__key__": f"sample_{wds_split:03d}_{idx:07d}",
            #     # **{f'{k}.pyd': v for k, v in compressed_sample.items()}, # store as pickle, already compressed
            #     'sample.pyd': compressed_sample
            #     # 'sample.gz': compressed_sample
            # })

            # break
            # if idx > 25:
            #     break
        # except:
            # continue

        # sink.close()

    # convert_to_lmdb(data, os.path.join(logger.get_dir(), dataset_name)) convert_to_lmdb_compressed(data, os.ath.join(logger.get_dir(), dataset_name))
    # convert_to_lmdb_compressed(data, os.path.join(logger.get_dir()), dataset_size)
    save_pcd_from_depth(data, dataset_size,
                        os.path.join(logger.get_dir(), f'wds-%06d.tar'),
                        args.start_shard, args.wds_split)


def create_argparser(**kwargs):
    # defaults.update(model_and_diffusion_defaults())

    defaults = dict(
        seed=0,
        dataset_size=-1,
        trainer_name='input_rec',
        use_amp=False,
        overfitting=False,
        num_workers=4,
        image_size=128,
        image_size_encoder=224,
        iterations=150000,
        anneal_lr=False,
        lr=5e-5,
        weight_decay=0.0,
        lr_anneal_steps=0,
        batch_size=1,
        eval_batch_size=12,
        microbatch=-1,  # -1 disables microbatches
        ema_rate="0.9999",  # comma-separated list of EMA values
        log_interval=50,
        eval_interval=2500,
        save_interval=10000,
        resume_checkpoint="",
        use_fp16=False,
        fp16_scale_growth=1e-3,
        data_dir="",
        eval_data_dir="",
        # load_depth=False, # TODO
        logdir="/mnt/lustre/yslan/logs/nips23/",
        # test warm up pose sampling training
        objv_dataset=False,
        pose_warm_up_iter=-1,
        start_shard=0,
        shuffle_across_cls=False,
        wds_split=1,  # out of 4
    )

    defaults.update(encoder_and_nsr_defaults())  # type: ignore
    defaults.update(loss_defaults())

    parser = argparse.ArgumentParser()
    add_dict_to_argparser(parser, defaults)

    return parser


if __name__ == "__main__":
    # os.environ[
    # "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"  # set to DETAIL for runtime logging.
    # os.environ["TORCH_CPP_LOG_LEVEL"]="INFO"
    # os.environ["NCCL_DEBUG"]="INFO"

    args = create_argparser().parse_args()
    # args.local_rank = int(os.environ["LOCAL_RANK"])
    args.gpus = th.cuda.device_count()

    opts = args

    args.rendering_kwargs = rendering_options_defaults(opts)

    # print(args)
    with open(os.path.join(args.logdir, 'args.json'), 'w') as f:
        json.dump(vars(args), f, indent=2)

    # Launch processes.
    print('Launching processes...')

    # try:
    training_loop(args)
    # except KeyboardInterrupt as e:
    # except Exception as e:
    #     # print(e)
    #     traceback.print_exc()
    #     dist_util.cleanup() # clean port and socket when ctrl+c