File size: 18,673 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
"""
Train a diffusion model on images.
"""
import json
import sys
import os

sys.path.append('.')

# from dnnlib import EasyDict
import traceback

import torch as th
from xformers.triton import FusedLayerNorm as LayerNorm
import torch.multiprocessing as mp
import torch.distributed as dist
import numpy as np

import argparse
import dnnlib
from guided_diffusion import dist_util, logger
from guided_diffusion.resample import create_named_schedule_sampler
from guided_diffusion.script_util import (
    args_to_dict,
    add_dict_to_argparser,
    continuous_diffusion_defaults,
    control_net_defaults,
    model_and_diffusion_defaults,
    create_model_and_diffusion,
)
from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion
import nsr
import nsr.lsgm
# from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop

from datasets.eg3d_dataset import LMDBDataset_MV_Compressed_eg3d
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default, dataset_defaults
from datasets.shapenet import load_data, load_eval_data, load_memory_data
from nsr.losses.builder import E3DGELossClass

from torch_utils import legacy, misc
from torch.utils.data import Subset
from pdb import set_trace as st

from dnnlib.util import EasyDict, InfiniteSampler
# from .vit_triplane_train_FFHQ import init_dataset_kwargs
from datasets.eg3d_dataset import init_dataset_kwargs

th.backends.cudnn.enabled = True # https://zhuanlan.zhihu.com/p/635824460
th.backends.cudnn.benchmark = True

# from torch.utils.tensorboard import SummaryWriter

SEED = 0


def training_loop(args):
    # def training_loop(args):
    logger.log("dist setup...")
    # th.multiprocessing.set_start_method('spawn')
    th.autograd.set_detect_anomaly(False) # type: ignore
    # th.autograd.set_detect_anomaly(True)  # type: ignore
    # st()

    th.cuda.set_device(
        args.local_rank)  # set this line to avoid extra memory on rank 0
    th.cuda.empty_cache()

    th.cuda.manual_seed_all(SEED)
    np.random.seed(SEED)

    dist_util.setup_dist(args)

    # st() # mark

    th.backends.cuda.matmul.allow_tf32 = args.allow_tf32
    th.backends.cudnn.allow_tf32 = args.allow_tf32
    # st()

    # logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"])
    logger.configure(dir=args.logdir)

    logger.log("creating ViT encoder and NSR decoder...")
    # st() # mark
    device = dist_util.dev()

    args.img_size = [args.image_size_encoder]

    logger.log("creating model and diffusion...")
    # * set denoise model args

    if args.denoise_in_channels == -1:
        args.diffusion_input_size = args.image_size_encoder
        args.denoise_in_channels = args.out_chans
        args.denoise_out_channels = args.out_chans
    else:
        assert args.denoise_out_channels != -1

    # args.image_size = args.image_size_encoder  # 224, follow the triplane size

    # if args.diffusion_input_size == -1:
    # else:
    # args.image_size = args.diffusion_input_size

    if args.pred_type == 'v':  # for lsgm training
        assert args.predict_v == True  # for DDIM sampling
    
    # if not args.create_dit:

    denoise_model, diffusion = create_model_and_diffusion(
        **args_to_dict(args,
                       model_and_diffusion_defaults().keys()))

    opts = eg3d_options_default()
    if args.sr_training:
        args.sr_kwargs = dnnlib.EasyDict(
            channel_base=opts.cbase,
            channel_max=opts.cmax,
            fused_modconv_default='inference_only',
            use_noise=True
        )  # ! close noise injection? since noise_mode='none' in eg3d

    logger.log("creating encoder and NSR decoder...")
    auto_encoder = create_3DAE_model(
        **args_to_dict(args,
                       encoder_and_nsr_defaults().keys()))

    auto_encoder.to(device)
    auto_encoder.eval()

    # * load G_ema modules into autoencoder
    # * clone G_ema.decoder to auto_encoder triplane
    # logger.log("AE triplane decoder reuses G_ema decoder...")
    # auto_encoder.decoder.register_buffer('w_avg', G_ema.backbone.mapping.w_avg)

    # auto_encoder.decoder.triplane_decoder.decoder.load_state_dict(  # type: ignore
    #     G_ema.decoder.state_dict())  # type: ignore

    # set grad=False in this manner suppresses the DDP forward no grad error.

    # if args.sr_training:

    #     logger.log("AE triplane decoder reuses G_ema SR module...")
    #     # auto_encoder.decoder.triplane_decoder.superresolution.load_state_dict(  # type: ignore
    #     #     G_ema.superresolution.state_dict())  # type: ignore

    #     # set grad=False in this manner suppresses the DDP forward no grad error.
    # logger.log("freeze SR module...")
    # for param in auto_encoder.decoder.superresolution.parameters(): # type: ignore
    #     param.requires_grad_(False)

    #     # del G_ema
    #     th.cuda.empty_cache()

    if args.freeze_triplane_decoder:
        logger.log("freeze triplane decoder...")
        for param in auto_encoder.decoder.triplane_decoder.parameters(
        ):  # type: ignore
            # for param in auto_encoder.decoder.triplane_decoder.decoder.parameters(): # type: ignore
            param.requires_grad_(False)

    if args.cfg in ('afhq', 'ffhq'):

        if args.sr_training:

            logger.log("AE triplane decoder reuses G_ema SR module...")
            auto_encoder.decoder.triplane_decoder.superresolution.load_state_dict(  # type: ignore
                G_ema.superresolution.state_dict())  # type: ignore

            # set grad=False in this manner suppresses the DDP forward no grad error.
            for param in auto_encoder.decoder.triplane_decoder.superresolution.parameters(
            ):  # type: ignore
                param.requires_grad_(False)

        # ! load data
        if args.use_lmdb:
            logger.log("creating LMDB eg3d data loader...")
            training_set = LMDBDataset_MV_Compressed_eg3d(
                args.data_dir,
                args.image_size,
                args.image_size_encoder,
            )
        else:
            logger.log("creating eg3d data loader...")

            training_set_kwargs, dataset_name = init_dataset_kwargs(
                data=args.data_dir,
                class_name='datasets.eg3d_dataset.ImageFolderDataset',
                reso_gt=args.image_size)  # only load pose here
            # if args.cond and not training_set_kwargs.use_labels:
            # raise Exception('check here')

            # training_set_kwargs.use_labels = args.cond
            training_set_kwargs.use_labels = True
            training_set_kwargs.xflip = False
            training_set_kwargs.random_seed = SEED
            training_set_kwargs.max_size = args.dataset_size
            # desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}'

            # * construct ffhq/afhq dataset
            training_set = dnnlib.util.construct_class_by_name(
                **training_set_kwargs)  # subclass of training.dataset.Dataset

        training_set_sampler = InfiniteSampler(
            dataset=training_set,
            rank=dist_util.get_rank(),
            num_replicas=dist_util.get_world_size(),
            seed=SEED)

        data = iter(
            th.utils.data.DataLoader(
                dataset=training_set,
                sampler=training_set_sampler,
                batch_size=args.batch_size,
                pin_memory=True,
                num_workers=args.num_workers,
                persistent_workers=args.num_workers > 0,
                prefetch_factor=max(8 // args.batch_size, 2),
            ))
        #  prefetch_factor=2))

        eval_data = th.utils.data.DataLoader(dataset=Subset(
            training_set, np.arange(8)),
                                             batch_size=args.eval_batch_size,
                                             num_workers=1)

    else:

        logger.log("creating data loader...")

        if args.objv_dataset:
            from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data
        else:  # shapenet
            from datasets.shapenet import load_data, load_eval_data, load_memory_data

        # TODO, load shapenet data
        # data = load_data(
        # st() mark
        # if args.overfitting:
        #     logger.log("create overfitting memory dataset")
        #     data = load_memory_data(
        #         file_path=args.eval_data_dir,
        #         batch_size=args.batch_size,
        #         reso=args.image_size,
        #         reso_encoder=args.image_size_encoder,  # 224 -> 128
        #         num_workers=args.num_workers,
        #         load_depth=True  # for evaluation
        #     )
        # else:
        if args.use_wds:
            if args.data_dir == 'NONE':
                with open(args.shards_lst) as f:
                    shards_lst = [url.strip() for url in f.readlines()]
                data = load_wds_data(
                    shards_lst, args.image_size, args.image_size_encoder,
                    args.batch_size, args.num_workers,
                    **args_to_dict(args,
                                   dataset_defaults().keys()))

            else:
                data = load_wds_data(
                    args.data_dir, args.image_size, args.image_size_encoder,
                    args.batch_size, args.num_workers,
                    **args_to_dict(args,
                                   dataset_defaults().keys()))

                # eval_data = load_wds_data(
                #     args.data_dir,
                #     args.image_size,
                #     args.image_size_encoder,
                #     args.eval_batch_size,
                #     args.num_workers,
                #     decode_encode_img_only=args.decode_encode_img_only,
                #     load_wds_diff=args.load_wds_diff)

            if args.eval_data_dir == 'NONE':
                with open(args.eval_shards_lst) as f:
                    eval_shards_lst = [url.strip() for url in f.readlines()]
            else:
                eval_shards_lst = args.eval_data_dir  # auto expanded

            eval_data = load_wds_data(
                eval_shards_lst,
                args.image_size,
                args.image_size_encoder,
                args.eval_batch_size,
                args.num_workers,
                plucker_embedding=args.plucker_embedding,
                decode_encode_img_only=args.decode_encode_img_only,
                mv_input=args.mv_input,
                load_wds_diff=False,
                load_instance=True)

        else:
            logger.log("create all instances dataset")
            # st() mark
            data = load_data(
                file_path=args.data_dir,
                batch_size=args.batch_size,
                reso=args.image_size,
                reso_encoder=args.image_size_encoder,  # 224 -> 128
                num_workers=args.num_workers,
                **args_to_dict(args,
                                dataset_defaults().keys())
                # load_depth=args.load_depth,
                # preprocess=auto_encoder.preprocess,  # clip
                # dataset_size=args.dataset_size,
                # use_lmdb=args.use_lmdb,
                # trainer_name=args.trainer_name,
                # load_depth=True # for evaluation
            )
            eval_data = data
            # eval_data = load_eval_data(
            #     file_path=args.eval_data_dir,
            #     batch_size=args.eval_batch_size,
            #     reso=args.image_size,
            #     reso_encoder=args.image_size_encoder,  # 224 -> 128
            #     num_workers=args.num_workers,
            #     load_depth=True,  # for evaluation
            #     interval=args.interval,
            #     use_lmdb=args.use_lmdb,
            # )

    # let all processes sync up before starting with a new epoch of training

    if dist_util.get_rank() == 0:
        with open(os.path.join(args.logdir, 'args.json'), 'w') as f:
            json.dump(vars(args), f, indent=2)

    args.schedule_sampler = create_named_schedule_sampler(
        args.schedule_sampler, diffusion)

    opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys()))
    loss_class = E3DGELossClass(device, opt).to(device)

    logger.log("training...")

    TrainLoop = {
        'adm':
        nsr.TrainLoop3DDiffusion,
        'dit':
        nsr.TrainLoop3DDiffusionDiT,
        'ssd':
        nsr.TrainLoop3DDiffusionSingleStage,
        # 'ssd_cvD': nsr.TrainLoop3DDiffusionSingleStagecvD,
        'ssd_cvD_sds':
        nsr.TrainLoop3DDiffusionSingleStagecvDSDS,
        'ssd_cvd_sds_no_separate_sds_step':
        nsr.TrainLoop3DDiffusionSingleStagecvDSDS_sdswithrec,
        'vpsde_lsgm_noD':
        nsr.lsgm.TrainLoop3DDiffusionLSGM_noD,  # use vpsde
        'vpsde_TrainLoop3DDiffusionLSGM_cvD':
        nsr.lsgm.TrainLoop3DDiffusionLSGM_cvD,
        'vpsde_TrainLoop3DDiffusionLSGM_cvD_scaling':
        nsr.lsgm.TrainLoop3DDiffusionLSGM_cvD_scaling,
        'vpsde_TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm':
        nsr.lsgm.TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm,
        'vpsde_TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD':
        nsr.lsgm.TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD,
        'vpsde_TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD_weightingv0':
        nsr.lsgm.
        TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD_weightingv0,
        'vpsde_TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD_iterativeED':
        nsr.lsgm.
        TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD_iterativeED,
        'vpsde_TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD_iterativeED_nv':
        nsr.lsgm.
        TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD_iterativeED_nv,
        'vpsde_lsgm_joint_noD':
        nsr.lsgm.TrainLoop3DDiffusionLSGMJointnoD,  # use vpsde
        'vpsde_lsgm_joint_noD_ponly':
        nsr.lsgm.TrainLoop3DDiffusionLSGMJointnoD_ponly,  # use vpsde
        # control
        'vpsde_cldm':
        nsr.lsgm.TrainLoop3DDiffusionLSGM_Control,
        'vpsde_crossattn':
        nsr.lsgm.TrainLoop3DDiffusionLSGM_crossattn,
        'vpsde_crossattn_cldm':
        nsr.lsgm.crossattn_cldm.TrainLoop3DDiffusionLSGM_crossattn_controlNet,
        'vpsde_ldm':
        nsr.lsgm.TrainLoop3D_LDM,
        'sgm_legacy':
        nsr.lsgm.sgm_DiffusionEngine.DiffusionEngineLSGM,
    }[args.trainer_name]

    if 'vpsde' in args.trainer_name:
        sde_diffusion = make_sde_diffusion(
            dnnlib.EasyDict(
                args_to_dict(args,
                             continuous_diffusion_defaults().keys())))
        # assert args.mixed_prediction, 'enable mixed_prediction by default'
        logger.log('create VPSDE diffusion.')
    else:
        sde_diffusion = None

    if 'cldm' in args.trainer_name:
        assert isinstance(denoise_model, tuple)
        denoise_model, controlNet = denoise_model

        controlNet.to(dist_util.dev())
        controlNet.train()
    else:
        controlNet = None

    # st()
    denoise_model.to(dist_util.dev())
    denoise_model.train()

    auto_encoder.decoder.rendering_kwargs = args.rendering_kwargs
    TrainLoop(rec_model=auto_encoder,
              denoise_model=denoise_model,
              control_model=controlNet,
              diffusion=diffusion,
              sde_diffusion=sde_diffusion,
              loss_class=loss_class,
              data=data,
              eval_data=eval_data,
              **vars(args)).run_loop()

    dist_util.synchronize()


def create_argparser(**kwargs):
    # defaults.update(model_and_diffusion_defaults())

    defaults = dict(
        dataset_size=-1,
        diffusion_input_size=-1,
        trainer_name='adm',
        use_amp=False,
        train_vae=True,  # jldm?
        triplane_scaling_divider=1.0,  # divide by this value
        overfitting=False,
        num_workers=4,
        image_size=128,
        image_size_encoder=224,
        iterations=150000,
        schedule_sampler="uniform",
        anneal_lr=False,
        lr=5e-5,
        weight_decay=0.0,
        lr_anneal_steps=0,
        batch_size=1,
        eval_batch_size=12,
        microbatch=-1,  # -1 disables microbatches
        ema_rate="0.9999",  # comma-separated list of EMA values
        log_interval=50,
        eval_interval=2500,
        save_interval=10000,
        resume_checkpoint="",
        resume_checkpoint_EG3D="",
        use_fp16=False,
        fp16_scale_growth=1e-3,
        data_dir="",
        eval_data_dir="",
        load_depth=True,  # TODO
        logdir="/mnt/lustre/yslan/logs/nips23/",
        load_submodule_name='',  # for loading pretrained auto_encoder model
        ignore_resume_opt=False,
        # freeze_ae=False,
        denoised_ae=True,
        diffusion_ce_anneal=False,
        use_lmdb=False,
        interval=1,
        freeze_triplane_decoder=False,
        objv_dataset=False,
        use_eos_feature=False,
        clip_grad_throld=1.0,
        allow_tf32=True,
    )

    defaults.update(model_and_diffusion_defaults())
    defaults.update(continuous_diffusion_defaults())
    defaults.update(encoder_and_nsr_defaults())  # type: ignore
    defaults.update(dataset_defaults())  # type: ignore
    defaults.update(loss_defaults())
    defaults.update(control_net_defaults())

    parser = argparse.ArgumentParser()
    add_dict_to_argparser(parser, defaults)

    return parser


if __name__ == "__main__":
    # os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO"
    # os.environ["NCCL_DEBUG"] = "INFO"
    th.multiprocessing.set_start_method('spawn')

    os.environ[
        "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"  # set to DETAIL for runtime logging.

    args = create_argparser().parse_args()
    args.local_rank = int(os.environ["LOCAL_RANK"])
    args.gpus = th.cuda.device_count()

    # opts = dnnlib.EasyDict(vars(args))  # compatiable with triplane original settings
    # opts = args
    args.rendering_kwargs = rendering_options_defaults(args)

    # Launch processes.
    logger.log('Launching processes...')

    logger.log('Available devices ', th.cuda.device_count())
    logger.log('Current cuda device ', th.cuda.current_device())
    # logger.log('GPU Device name:', th.cuda.get_device_name(th.cuda.current_device()))

    try:
        training_loop(args)
    # except KeyboardInterrupt as e:
    except Exception as e:
        # print(e)
        traceback.print_exc()
        dist_util.cleanup()  # clean port and socket when ctrl+c