File size: 6,618 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# https://gist.github.com/lucidrains/5193d38d1d889681dd42feb847f1f6da
# https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_3d.py

import torch
from torch import nn
from pdb import set_trace as st

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

from .vit_with_mask import Transformer

# helpers


def pair(t):
    return t if isinstance(t, tuple) else (t, t)


# classes


# class PreNorm(nn.Module):

#     def __init__(self, dim, fn):
#         super().__init__()
#         self.norm = nn.LayerNorm(dim)
#         self.fn = fn

#     def forward(self, x, **kwargs):
#         return self.fn(self.norm(x), **kwargs)


# class FeedForward(nn.Module):

#     def __init__(self, dim, hidden_dim, dropout=0.):
#         super().__init__()
#         self.net = nn.Sequential(nn.Linear(dim, hidden_dim), nn.GELU(),
#                                  nn.Dropout(dropout),
#                                  nn.Linear(hidden_dim,
#                                            dim), nn.Dropout(dropout))

#     def forward(self, x):
#         return self.net(x)


# class Attention(nn.Module):

#     def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
#         super().__init__()
#         inner_dim = dim_head * heads
#         project_out = not (heads == 1 and dim_head == dim)

#         self.heads = heads
#         self.scale = dim_head**-0.5

#         self.attend = nn.Softmax(dim=-1)
#         self.dropout = nn.Dropout(dropout)

#         self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)

#         self.to_out = nn.Sequential(
#             nn.Linear(inner_dim, dim),
#             nn.Dropout(dropout)) if project_out else nn.Identity()

#     def forward(self, x):
#         qkv = self.to_qkv(x).chunk(3, dim=-1)
#         q, k, v = map(
#             lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.heads), qkv)

#         dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale

#         attn = self.attend(dots)
#         attn = self.dropout(attn)

#         out = torch.matmul(attn, v)
#         out = rearrange(out, 'b h n d -> b n (h d)')
#         return self.to_out(out)


# class Transformer(nn.Module):

#     def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
#         super().__init__()
#         self.layers = nn.ModuleList([])
#         for _ in range(depth):
#             self.layers.append(
#                 nn.ModuleList([
#                     PreNorm(
#                         dim,
#                         Attention(dim,
#                                   heads=heads,
#                                   dim_head=dim_head,
#                                   dropout=dropout)),
#                     PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))
#                 ]))

#     def forward(self, x):
#         for attn, ff in self.layers:
#             x = attn(x) + x
#             x = ff(x) + x
#         return x


# https://gist.github.com/lucidrains/213d2be85d67d71147d807737460baf4
class ViTVoxel(nn.Module):
    def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dropout = 0., emb_dropout = 0.):
        super().__init__()
        assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
        num_patches = (image_size // patch_size) ** 3
        patch_dim = channels * patch_size ** 3

        self.patch_size = patch_size

        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
        self.patch_to_embedding = nn.Linear(patch_dim, dim)
        self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
        self.dropout = nn.Dropout(emb_dropout)

        self.transformer = Transformer(dim, depth, heads, mlp_dim, dropout)

        self.to_cls_token = nn.Identity()

        self.mlp_head = nn.Sequential(
            nn.LayerNorm(dim),
            nn.Linear(dim, mlp_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(mlp_dim, num_classes),
            nn.Dropout(dropout)
        )

    def forward(self, img, mask = None):
        p = self.patch_size

        x = rearrange(img, 'b c (h p1) (w p2) (d p3) -> b (h w d) (p1 p2 p3 c)', p1 = p, p2 = p, p3 = p)
        x = self.patch_to_embedding(x)

        cls_tokens = self.cls_token.expand(img.shape[0], -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x += self.pos_embedding
        x = self.dropout(x)

        x = self.transformer(x, mask)

        x = self.to_cls_token(x[:, 0])
        return self.mlp_head(x)


class ViTTriplane(nn.Module):
    def __init__(self, *, image_size, triplane_size, image_patch_size, triplane_patch_size, num_classes, dim, depth, heads, mlp_dim, patch_embed=False, channels = 3, dim_head = 64,  dropout = 0., emb_dropout = 0.):
        super().__init__()
        assert image_size % image_patch_size == 0, 'image dimensions must be divisible by the patch size'

        num_patches = (image_size // image_patch_size) ** 2 * triplane_size # 14*14*3
        # patch_dim = channels * image_patch_size ** 3

        self.patch_size = image_patch_size
        self.triplane_patch_size = triplane_patch_size

        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))

        self.patch_embed = patch_embed
        # if self.patch_embed:
        patch_dim = channels * image_patch_size ** 2 * triplane_patch_size # 1
        self.patch_to_embedding = nn.Linear(patch_dim, dim)

        self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
        self.dropout = nn.Dropout(emb_dropout)

        self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)

        self.to_cls_token = nn.Identity()

        # self.mlp_head = nn.Sequential(
        #     nn.LayerNorm(dim),
        #     nn.Linear(dim, mlp_dim),
        #     nn.GELU(),
        #     nn.Dropout(dropout),
        #     nn.Linear(mlp_dim, num_classes),
        #     nn.Dropout(dropout)
        # )

    def forward(self, triplane, mask = None):
        p = self.patch_size
        p_3d = self.triplane_patch_size

        x = rearrange(triplane, 'b c (h p1) (w p2) (d p3) -> b (h w d) (p1 p2 p3 c)', p1 = p, p2 = p, p3 = p_3d)

        # if self.patch_embed:
        x = self.patch_to_embedding(x) # B 14*14*4 768

        cls_tokens = self.cls_token.expand(triplane.shape[0], -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x += self.pos_embedding
        x = self.dropout(x)

        x = self.transformer(x, mask)

        return x[:, 1:]

        # x = self.to_cls_token(x[:, 0])
        # return self.mlp_head(x)