Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,618 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# https://gist.github.com/lucidrains/5193d38d1d889681dd42feb847f1f6da
# https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_3d.py
import torch
from torch import nn
from pdb import set_trace as st
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from .vit_with_mask import Transformer
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# classes
# class PreNorm(nn.Module):
# def __init__(self, dim, fn):
# super().__init__()
# self.norm = nn.LayerNorm(dim)
# self.fn = fn
# def forward(self, x, **kwargs):
# return self.fn(self.norm(x), **kwargs)
# class FeedForward(nn.Module):
# def __init__(self, dim, hidden_dim, dropout=0.):
# super().__init__()
# self.net = nn.Sequential(nn.Linear(dim, hidden_dim), nn.GELU(),
# nn.Dropout(dropout),
# nn.Linear(hidden_dim,
# dim), nn.Dropout(dropout))
# def forward(self, x):
# return self.net(x)
# class Attention(nn.Module):
# def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
# super().__init__()
# inner_dim = dim_head * heads
# project_out = not (heads == 1 and dim_head == dim)
# self.heads = heads
# self.scale = dim_head**-0.5
# self.attend = nn.Softmax(dim=-1)
# self.dropout = nn.Dropout(dropout)
# self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
# self.to_out = nn.Sequential(
# nn.Linear(inner_dim, dim),
# nn.Dropout(dropout)) if project_out else nn.Identity()
# def forward(self, x):
# qkv = self.to_qkv(x).chunk(3, dim=-1)
# q, k, v = map(
# lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.heads), qkv)
# dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
# attn = self.attend(dots)
# attn = self.dropout(attn)
# out = torch.matmul(attn, v)
# out = rearrange(out, 'b h n d -> b n (h d)')
# return self.to_out(out)
# class Transformer(nn.Module):
# def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
# super().__init__()
# self.layers = nn.ModuleList([])
# for _ in range(depth):
# self.layers.append(
# nn.ModuleList([
# PreNorm(
# dim,
# Attention(dim,
# heads=heads,
# dim_head=dim_head,
# dropout=dropout)),
# PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))
# ]))
# def forward(self, x):
# for attn, ff in self.layers:
# x = attn(x) + x
# x = ff(x) + x
# return x
# https://gist.github.com/lucidrains/213d2be85d67d71147d807737460baf4
class ViTVoxel(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dropout = 0., emb_dropout = 0.):
super().__init__()
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
num_patches = (image_size // patch_size) ** 3
patch_dim = channels * patch_size ** 3
self.patch_size = patch_size
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, mlp_dim, dropout)
self.to_cls_token = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, mlp_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(mlp_dim, num_classes),
nn.Dropout(dropout)
)
def forward(self, img, mask = None):
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) (d p3) -> b (h w d) (p1 p2 p3 c)', p1 = p, p2 = p, p3 = p)
x = self.patch_to_embedding(x)
cls_tokens = self.cls_token.expand(img.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding
x = self.dropout(x)
x = self.transformer(x, mask)
x = self.to_cls_token(x[:, 0])
return self.mlp_head(x)
class ViTTriplane(nn.Module):
def __init__(self, *, image_size, triplane_size, image_patch_size, triplane_patch_size, num_classes, dim, depth, heads, mlp_dim, patch_embed=False, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
assert image_size % image_patch_size == 0, 'image dimensions must be divisible by the patch size'
num_patches = (image_size // image_patch_size) ** 2 * triplane_size # 14*14*3
# patch_dim = channels * image_patch_size ** 3
self.patch_size = image_patch_size
self.triplane_patch_size = triplane_patch_size
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.patch_embed = patch_embed
# if self.patch_embed:
patch_dim = channels * image_patch_size ** 2 * triplane_patch_size # 1
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.to_cls_token = nn.Identity()
# self.mlp_head = nn.Sequential(
# nn.LayerNorm(dim),
# nn.Linear(dim, mlp_dim),
# nn.GELU(),
# nn.Dropout(dropout),
# nn.Linear(mlp_dim, num_classes),
# nn.Dropout(dropout)
# )
def forward(self, triplane, mask = None):
p = self.patch_size
p_3d = self.triplane_patch_size
x = rearrange(triplane, 'b c (h p1) (w p2) (d p3) -> b (h w d) (p1 p2 p3 c)', p1 = p, p2 = p, p3 = p_3d)
# if self.patch_embed:
x = self.patch_to_embedding(x) # B 14*14*4 768
cls_tokens = self.cls_token.expand(triplane.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding
x = self.dropout(x)
x = self.transformer(x, mask)
return x[:, 1:]
# x = self.to_cls_token(x[:, 0])
# return self.mlp_head(x) |