yslan's picture
init
7f51798
raw
history blame
14.9 kB
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import math
import pytorch3d.ops
import numpy as np
import os
import argparse
import multiprocessing as mp
from multiprocessing import Pool
import trimesh
import tqdm
import torch
import nvdiffrast.torch as dr
import kaolin as kal
import glob
import ipdb
parser = argparse.ArgumentParser(description='sample surface points from mesh')
parser.add_argument(
'--n_proc', type=int, default=8,
help='Number of processes to run in parallel'
'(0 means sequential execution).')
parser.add_argument(
'--n_points', type=int, default=4096,
help='Number of points to sample per model.')
parser.add_argument(
'--n_views', type=int, default=100,
help='Number of views per model.')
parser.add_argument(
'--image_height', type=int, default=640,
help='Depth image height.')
parser.add_argument(
'--image_width', type=int, default=640,
help='Depth image width.')
parser.add_argument(
'--focal_length_x', type=float, default=640,
help='Focal length in x direction.')
parser.add_argument(
'--focal_length_y', type=float, default=640,
help='Focal length in y direction.')
parser.add_argument(
'--principal_point_x', type=float, default=320,
help='Principal point location in x direction.')
parser.add_argument(
'--principal_point_y', type=float, default=320,
help='Principal point location in y direction.')
parser.add_argument("--shape_root", type=str, default='/mnt/petrelfs/caoziang/3D_generation/Checkpoint_all/diffusion_shapenet_testmodel27_omni_ablation2/ddpm_5000/test', help="path to the save resules shapenet dataset")
parser.add_argument("--save_root", type=str, default='/mnt/petrelfs/caoziang/3D_generation/Checkpoint_all/diffusion_shapenet_testmodel27_omni_ablation2/ddpm_vis_ab2surface', help="path to the split shapenet dataset")
options = parser.parse_args()
# create array for inverse mapping
coordspx2 = np.stack(np.nonzero(np.ones((options.image_height, options.image_width))), -1).astype(np.float32)
coordspx2 = coordspx2[:, ::-1]
fusion_intrisics = np.array(
[
[options.focal_length_x, 0, options.principal_point_x],
[0, options.focal_length_y, options.principal_point_y],
[0, 0, 1]
])
# glctx = dr.RasterizeGLContext() # EGL/egl.h: No such file or directory
glctx = dr.RasterizeCudaContext()
def CalcLinearZ(depth):
# depth = depth * 2 - 1
zFar = 100.0
zNear = 0.1
linear = zNear / (zFar - depth * (zFar - zNear)) * zFar
return linear
def projection_cv_new(fx, fy, cx, cy, width, height, n=1.0, f=50.0):
return np.array(
[[-2 * fx / width, 0.0, (width - 2 * cx) / width, 0.0],
[0.0, -2 * fy / height, (height - 2 * cy) / height, 0.0],
[0.0, 0.0, (-f - n) / (f - n), -2.0 * f * n / (f - n)],
[0.0, 0.0, -1.0, 0.0]])
def interpolate(attr, rast, attr_idx, rast_db=None):
return dr.interpolate(
attr.contiguous(), rast, attr_idx, rast_db=rast_db,
diff_attrs=None if rast_db is None else 'all')
def render_nvdiffrast(v_pos, tris, T_bx4x4):
# T_bx4x4 - world to cam
proj = projection_cv_new(
fx=options.focal_length_x, fy=options.focal_length_y, cx=options.principal_point_x,
cy=options.principal_point_y,
width=options.image_width, height=options.image_height, n=0.1, f=100.0)
fix = torch.eye(4, dtype=torch.float32, device='cuda')
fix[2, 2] = -1
fix[1, 1] = -1
fix[0, 0] = -1
fix = fix.unsqueeze(0).repeat(T_bx4x4.shape[0], 1, 1)
proj = torch.tensor(proj, dtype=torch.float32, device='cuda').unsqueeze(0).repeat(T_bx4x4.shape[0], 1, 1)
T_world_cam_bx4x4 = torch.bmm(fix, T_bx4x4)
mvp = torch.bmm(proj, T_world_cam_bx4x4)
v_pos_clip = torch.matmul(
torch.nn.functional.pad(v_pos, pad=(0, 1), mode='constant', value=1.0),
torch.transpose(mvp, 1, 2))
rast, db = dr.rasterize(
glctx, torch.tensor(v_pos_clip, dtype=torch.float32, device='cuda'), tris.int(),
(options.image_height, options.image_width))
v_pos_cam = torch.matmul(
torch.nn.functional.pad(v_pos, pad=(0, 1), mode='constant', value=1.0),
torch.transpose(T_world_cam_bx4x4, 1, 2))
gb_pos_cam, _ = interpolate(v_pos_cam, rast, tris.int())
depth_maps = gb_pos_cam[..., 2].abs()
return depth_maps
def as_mesh(scene_or_mesh):
"""
Convert a possible scene to a mesh.
If conversion occurs, the returned mesh has only vertex and face data.
"""
if isinstance(scene_or_mesh, trimesh.Scene):
if len(scene_or_mesh.geometry) == 0:
mesh = None # empty scene
else:
# we lose texture information here
mesh = trimesh.util.concatenate(
tuple(
trimesh.Trimesh(vertices=g.vertices, faces=g.faces)
for g in scene_or_mesh.geometry.values()))
else:
assert (isinstance(scene_or_mesh, trimesh.Trimesh))
mesh = scene_or_mesh
return mesh
def render(mesh_v, mesh_f, Rs):
"""
Render the given mesh using the generated views.
:param base_mesh: mesh to render
:type base_mesh: mesh.Mesh
:param Rs: rotation matrices
:type Rs: [numpy.ndarray]
:return: depth maps
:rtype: numpy.ndarray
"""
T_bx4x4 = torch.zeros((options.n_views, 4, 4), dtype=torch.float32, device='cuda')
T_bx4x4[:, 3, 3] = 1
T_bx4x4[:, 2, 3] = 1
T_bx4x4[:, :3, :3] = torch.tensor(Rs, dtype=torch.float32, device='cuda')
depthmaps = render_nvdiffrast(
mesh_v,
mesh_f, T_bx4x4)
return depthmaps
def get_points():
"""
:param n_points: number of points
:type n_points: int
:return: list of points
:rtype: numpy.ndarray
"""
rnd = 1.
points = []
offset = 2. / options.n_views
increment = math.pi * (3. - math.sqrt(5.))
for i in range(options.n_views):
y = ((i * offset) - 1) + (offset / 2)
r = math.sqrt(1 - pow(y, 2))
phi = ((i + rnd) % options.n_views) * increment
x = math.cos(phi) * r
z = math.sin(phi) * r
points.append([x, y, z])
return np.array(points)
def get_views(semi_sphere=False):
"""
Generate a set of views to generate depth maps from.
:param n_views: number of views per axis
:type n_views: int
:return: rotation matrices
:rtype: [numpy.ndarray]
"""
Rs = []
points = get_points()
if semi_sphere:
points[:, 2] = -np.abs(points[:, 2]) - 0.1
for i in range(points.shape[0]):
longitude = - math.atan2(points[i, 0], points[i, 1])
latitude = math.atan2(points[i, 2], math.sqrt(points[i, 0] ** 2 + points[i, 1] ** 2))
R_x = np.array(
[[1, 0, 0],
[0, math.cos(latitude), -math.sin(latitude)],
[0, math.sin(latitude), math.cos(latitude)]])
R_y = np.array(
[[math.cos(longitude), 0, math.sin(longitude)],
[0, 1, 0],
[-math.sin(longitude), 0, math.cos(longitude)]])
R = R_x @ R_y
Rs.append(R)
return Rs
def fusion(depthmaps, Rs):
"""
Fuse the rendered depth maps.
:param depthmaps: depth maps
:type depthmaps: numpy.ndarray
:param Rs: rotation matrices corresponding to views
:type Rs: [numpy.ndarray]
:return: (T)SDF
:rtype: numpy.ndarray
"""
# sample points inside mask
sample_per_view = options.n_points // options.n_views
sample_bxn = torch.zeros((options.n_views, sample_per_view), device='cuda', dtype=torch.long)
for i in range(len(Rs)):
mask = depthmaps[i] > 0
valid_idx = torch.nonzero(mask.reshape(-1)).squeeze(-1)
idx = list(range(valid_idx.shape[0]))
np.random.shuffle(idx)
idx = idx[:sample_per_view]
sample_bxn[i] = torch.tensor(valid_idx[idx])
depthmaps = torch.gather(depthmaps.reshape(options.n_views, -1), 1, sample_bxn)
inv_Ks_bx3x3 = torch.tensor(np.linalg.inv(fusion_intrisics), dtype=torch.float32, device='cuda').unsqueeze(
0).repeat(options.n_views, 1, 1)
T_bx4x4 = torch.zeros((options.n_views, 4, 4), dtype=torch.float32, device='cuda')
T_bx4x4[:, 3, 3] = 1
T_bx4x4[:, 2, 3] = 1
T_bx4x4[:, :3, :3] = torch.tensor(Rs, dtype=torch.float32, device='cuda')
inv_T_bx4x4 = torch.inverse(T_bx4x4)
tf_coords_bxpx2 = torch.tensor(coordspx2.copy(), dtype=torch.float32, device='cuda').unsqueeze(0).repeat(
options.n_views, 1, 1)
tf_coords_bxpx2 = torch.gather(tf_coords_bxpx2, 1, sample_bxn.unsqueeze(-1).repeat(1, 1, 2))
tf_coords_bxpx3 = torch.cat([tf_coords_bxpx2, torch.ones_like(tf_coords_bxpx2[..., :1])], -1)
tf_coords_bxpx3 *= depthmaps.reshape(options.n_views, -1, 1)
tf_cam_bxpx3 = torch.bmm(inv_Ks_bx3x3, tf_coords_bxpx3.transpose(1, 2)).transpose(1, 2)
tf_cam_bxpx4 = torch.cat([tf_cam_bxpx3, torch.ones_like(tf_cam_bxpx3[..., :1])], -1)
tf_world_bxpx3 = torch.bmm(inv_T_bx4x4, tf_cam_bxpx4.transpose(1, 2)).transpose(1, 2)[..., :3]
return tf_world_bxpx3.reshape(-1, 3)
def normalize(vertices, faces, normalized_scale=0.9, rotate_x=False, center_xyz=False):
vertices = vertices.cuda()
if center_xyz: # some mesh's center is not origin
vertices = vertices - vertices.mean(0, keepdim=True)
if rotate_x: # rotate along x axis for 90 degrees to match the two coordiantes
rot_mat = torch.eye(n=3, device='cuda')
theta = np.pi / 90 # degree
rot_mat[1,1] = np.cos(theta)
rot_mat[2,2] = np.cos(theta)
rot_mat[1,2] =-np.sin(theta)
rot_mat[2,1] = np.sin(theta)
# ipdb.set_trace()
vertices = rot_mat @ vertices.transpose(0,1)
vertices = vertices.transpose(0,1)
scale = (vertices.max(dim=0)[0] - vertices.min(dim=0)[0]).max()
mesh_v1 = vertices / scale * normalized_scale
mesh_f1 = faces.long().cuda()
return mesh_v1, mesh_f1
def sample_surface_pts(path):
# ipdb.set_trace()
try:
mesh_path, output_pth, debug = path
# mesh = kal.io.obj.import_mesh(mesh_path)
# ipdb.set_trace()
mesh = trimesh.load(mesh_path) # fail to load ply?
#ipdb.set_trace()
if mesh.vertices.shape[0] == 0:
return
mesh_v = torch.Tensor(mesh.vertices)
# mesh_v, mesh_f = normalize(mesh_v, torch.Tensor(mesh.faces), normalized_scale=0.9, rotate_x=True)
# mesh_v, mesh_f = normalize(mesh_v, torch.Tensor(mesh.faces), normalized_scale=1.0, rotate_x=True, center_xyz=True)
mesh_v, mesh_f = normalize(mesh_v, torch.Tensor(mesh.faces), normalized_scale=1.0, rotate_x=False, center_xyz=True)
# generate camera matrices
# Rs = get_views()
# Rs = get_views(semi_sphere=True)
Rs = get_views(semi_sphere=False)
# get depth images
depths = render(mesh_v, mesh_f, Rs)
# project to world space
try:
pcd = fusion(depths, Rs)
except:
return
# fps again
pcd, fps_idx = pytorch3d.ops.sample_farthest_points(
# torch.from_numpy(pcd).unsqueeze(0).cuda(), K=4096,
# torch.from_numpy(pcd).unsqueeze(0).cuda(), K=4000,
pcd.unsqueeze(0).cuda(), K=4000,
random_start_point=True) # B self.latent_num
pcd = pcd[0]
pcd = pcd.cpu().numpy()
#np.savez(output_pth, pcd=pcd)
#ipdb.set_trace()
#if debug:
pcd = trimesh.points.PointCloud(pcd)
pcd.export(output_pth.replace('.npz', '.obj'))
except Exception as e:
# print('error')
print(e, flush=True)
if __name__ == '__main__':
mp.set_start_method('spawn')
shapenet_root = options.shape_root
save_root = options.save_root
debug = True
#model_list = sorted(os.listdir(shapenet_root))[:7500]
# model_list=glob.glob(os.path.join(shapenet_root, '*.obj'))
# os.makedirs(save_root, exist_ok=True)
# cmds = [(os.path.join(shapenet_root, id.split('/')[-1]), os.path.join(save_root, id.split('/')[-1]), debug) for id in model_list]
# cmds = [(os.path.join(shapenet_root, id.split('/')[-1]), os.path.join(save_root, 'pcd_4096.ply'), debug) for id in model_list]
# cmds += [(os.path.join(shapenet_root, id.split('/')[-1]), os.path.join(save_root, 'test.obj'), debug) for id in model_list]
cmds = []
# for instance_name in os.listdir(shapenet_root)[:]:
# cmds += [(os.path.join(shapenet_root, instance_name), os.path.join(save_root, f'{instance_name.split(".")[0]}_pcd_4096.ply'), debug)]
# ! for gt
# for obj_folder in sorted(os.listdir(shapenet_root)):
# cmds += [(os.path.join(shapenet_root, obj_folder, 'meshes/model.obj'), os.path.join(save_root, f'{obj_folder}_pcd_4096.ply'), debug)]
# ! for baseline samples
os.makedirs(save_root, exist_ok=True)
for obj_folder in sorted(os.listdir(shapenet_root)):
if not os.path.isdir(os.path.join(shapenet_root, obj_folder)):
continue
for idx in [0]:
ipdb.set_trace()
# for i in range(10):
# img=os.path.join(shapenet_root,obj_folder, str(idx),f'{i}.jpg')
# img=os.path.join(path,obj_folder, str(idx),f'sample-0-{i}.jpg')
# files.append(img)
if 'CRM' in shapenet_root:
# ipdb.set_trace()
mesh_path = glob.glob(os.path.join(shapenet_root, obj_folder, f'{idx}', '*.obj'))[0]
elif 'Lara' in shapenet_root:
mesh_path = glob.glob(os.path.join(shapenet_root, '/'.join(obj_folder.split('/')[:-1]), '0.jpg', '*.obj'))[0]
elif 'LRM' in shapenet_root:
mesh_path = glob.glob(os.path.join(shapenet_root, '/'.join(obj_folder.split('/')[:-1]), '0', f'{idx}.jpg', '*.obj'))[0]
else:
if os.path.exists((os.path.join(shapenet_root, obj_folder, f'{idx}/mesh.obj'))):
mesh_path = os.path.join(shapenet_root, obj_folder, f'{idx}/mesh.obj')
else:
mesh_path = os.path.join(shapenet_root, obj_folder, f'{idx}/mesh.ply')
cmds += [(mesh_path, os.path.join(save_root, f'{obj_folder}_pcd_4096.ply'), debug)]
if options.n_proc == 0:
for filepath in tqdm.tqdm(cmds):
sample_surface_pts(filepath)
else:
with Pool(options.n_proc) as p:
list(tqdm.tqdm(p.imap(sample_surface_pts, cmds), total=len(cmds)))