Spaces:
Running
on
Zero
Running
on
Zero
GaussianAnything-AIGC3D
/
submodules
/diff-surfel-rasterization
/third_party
/glm
/test
/gtc
/gtc_bitfield.cpp
namespace mask | |
{ | |
template<typename genType> | |
struct type | |
{ | |
genType Value; | |
genType Return; | |
}; | |
inline int mask_zero(int Bits) | |
{ | |
return ~((~0) << Bits); | |
} | |
inline int mask_mix(int Bits) | |
{ | |
return Bits >= sizeof(int) * 8 ? 0xffffffff : (static_cast<int>(1) << Bits) - static_cast<int>(1); | |
} | |
inline int mask_half(int Bits) | |
{ | |
// We do the shift in two steps because 1 << 32 on an int is undefined. | |
int const Half = Bits >> 1; | |
int const Fill = ~0; | |
int const ShiftHaft = (Fill << Half); | |
int const Rest = Bits - Half; | |
int const Reversed = ShiftHaft << Rest; | |
return ~Reversed; | |
} | |
inline int mask_loop(int Bits) | |
{ | |
int Mask = 0; | |
for(int Bit = 0; Bit < Bits; ++Bit) | |
Mask |= (static_cast<int>(1) << Bit); | |
return Mask; | |
} | |
int perf() | |
{ | |
int const Count = 100000000; | |
std::clock_t Timestamp1 = std::clock(); | |
{ | |
std::vector<int> Mask; | |
Mask.resize(Count); | |
for(int i = 0; i < Count; ++i) | |
Mask[i] = mask_mix(i % 32); | |
} | |
std::clock_t Timestamp2 = std::clock(); | |
{ | |
std::vector<int> Mask; | |
Mask.resize(Count); | |
for(int i = 0; i < Count; ++i) | |
Mask[i] = mask_loop(i % 32); | |
} | |
std::clock_t Timestamp3 = std::clock(); | |
{ | |
std::vector<int> Mask; | |
Mask.resize(Count); | |
for(int i = 0; i < Count; ++i) | |
Mask[i] = glm::mask(i % 32); | |
} | |
std::clock_t Timestamp4 = std::clock(); | |
{ | |
std::vector<int> Mask; | |
Mask.resize(Count); | |
for(int i = 0; i < Count; ++i) | |
Mask[i] = mask_zero(i % 32); | |
} | |
std::clock_t Timestamp5 = std::clock(); | |
{ | |
std::vector<int> Mask; | |
Mask.resize(Count); | |
for(int i = 0; i < Count; ++i) | |
Mask[i] = mask_half(i % 32); | |
} | |
std::clock_t Timestamp6 = std::clock(); | |
std::clock_t TimeMix = Timestamp2 - Timestamp1; | |
std::clock_t TimeLoop = Timestamp3 - Timestamp2; | |
std::clock_t TimeDefault = Timestamp4 - Timestamp3; | |
std::clock_t TimeZero = Timestamp5 - Timestamp4; | |
std::clock_t TimeHalf = Timestamp6 - Timestamp5; | |
std::printf("mask[mix]: %d\n", static_cast<unsigned int>(TimeMix)); | |
std::printf("mask[loop]: %d\n", static_cast<unsigned int>(TimeLoop)); | |
std::printf("mask[default]: %d\n", static_cast<unsigned int>(TimeDefault)); | |
std::printf("mask[zero]: %d\n", static_cast<unsigned int>(TimeZero)); | |
std::printf("mask[half]: %d\n", static_cast<unsigned int>(TimeHalf)); | |
return TimeDefault < TimeLoop ? 0 : 1; | |
} | |
int test_uint() | |
{ | |
type<glm::uint> const Data[] = | |
{ | |
{ 0, 0x00000000}, | |
{ 1, 0x00000001}, | |
{ 2, 0x00000003}, | |
{ 3, 0x00000007}, | |
{31, 0x7fffffff}, | |
{32, 0xffffffff} | |
}; | |
int Error = 0; | |
/* mask_zero is sadly not a correct code | |
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | |
{ | |
int Result = mask_zero(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
*/ | |
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | |
{ | |
int Result = mask_mix(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | |
{ | |
int Result = mask_half(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | |
{ | |
int Result = mask_loop(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | |
{ | |
int Result = glm::mask(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
return Error; | |
} | |
int test_uvec4() | |
{ | |
type<glm::ivec4> const Data[] = | |
{ | |
{glm::ivec4( 0), glm::ivec4(0x00000000)}, | |
{glm::ivec4( 1), glm::ivec4(0x00000001)}, | |
{glm::ivec4( 2), glm::ivec4(0x00000003)}, | |
{glm::ivec4( 3), glm::ivec4(0x00000007)}, | |
{glm::ivec4(31), glm::ivec4(0x7fffffff)}, | |
{glm::ivec4(32), glm::ivec4(0xffffffff)} | |
}; | |
int Error(0); | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::ivec4>); i < n; ++i) | |
{ | |
glm::ivec4 Result = glm::mask(Data[i].Value); | |
Error += glm::all(glm::equal(Data[i].Return, Result)) ? 0 : 1; | |
} | |
return Error; | |
} | |
int test() | |
{ | |
int Error(0); | |
Error += test_uint(); | |
Error += test_uvec4(); | |
return Error; | |
} | |
}//namespace mask | |
namespace bitfieldInterleave3 | |
{ | |
template<typename PARAM, typename RET> | |
inline RET refBitfieldInterleave(PARAM x, PARAM y, PARAM z) | |
{ | |
RET Result = 0; | |
for(RET i = 0; i < sizeof(PARAM) * 8; ++i) | |
{ | |
Result |= ((RET(x) & (RET(1U) << i)) << ((i << 1) + 0)); | |
Result |= ((RET(y) & (RET(1U) << i)) << ((i << 1) + 1)); | |
Result |= ((RET(z) & (RET(1U) << i)) << ((i << 1) + 2)); | |
} | |
return Result; | |
} | |
int test() | |
{ | |
int Error(0); | |
glm::uint16 x_max = 1 << 11; | |
glm::uint16 y_max = 1 << 11; | |
glm::uint16 z_max = 1 << 11; | |
for(glm::uint16 z = 0; z < z_max; z += 27) | |
for(glm::uint16 y = 0; y < y_max; y += 27) | |
for(glm::uint16 x = 0; x < x_max; x += 27) | |
{ | |
glm::uint64 ResultA = refBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z); | |
glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z); | |
Error += ResultA == ResultB ? 0 : 1; | |
} | |
return Error; | |
} | |
} | |
namespace bitfieldInterleave4 | |
{ | |
template<typename PARAM, typename RET> | |
inline RET loopBitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w) | |
{ | |
RET const v[4] = {x, y, z, w}; | |
RET Result = 0; | |
for(RET i = 0; i < sizeof(PARAM) * 8; i++) | |
{ | |
Result |= ((((v[0] >> i) & 1U)) << ((i << 2) + 0)); | |
Result |= ((((v[1] >> i) & 1U)) << ((i << 2) + 1)); | |
Result |= ((((v[2] >> i) & 1U)) << ((i << 2) + 2)); | |
Result |= ((((v[3] >> i) & 1U)) << ((i << 2) + 3)); | |
} | |
return Result; | |
} | |
int test() | |
{ | |
int Error(0); | |
glm::uint16 x_max = 1 << 11; | |
glm::uint16 y_max = 1 << 11; | |
glm::uint16 z_max = 1 << 11; | |
glm::uint16 w_max = 1 << 11; | |
for(glm::uint16 w = 0; w < w_max; w += 27) | |
for(glm::uint16 z = 0; z < z_max; z += 27) | |
for(glm::uint16 y = 0; y < y_max; y += 27) | |
for(glm::uint16 x = 0; x < x_max; x += 27) | |
{ | |
glm::uint64 ResultA = loopBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z, w); | |
glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z, w); | |
Error += ResultA == ResultB ? 0 : 1; | |
} | |
return Error; | |
} | |
} | |
namespace bitfieldInterleave | |
{ | |
inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y) | |
{ | |
glm::uint64 REG1; | |
glm::uint64 REG2; | |
REG1 = x; | |
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | |
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | |
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); | |
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); | |
REG2 = y; | |
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | |
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | |
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); | |
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); | |
return REG1 | (REG2 << 1); | |
} | |
inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y) | |
{ | |
glm::uint64 REG1; | |
glm::uint64 REG2; | |
REG1 = x; | |
REG2 = y; | |
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | |
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | |
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | |
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | |
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); | |
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); | |
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); | |
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); | |
return REG1 | (REG2 << 1); | |
} | |
/* | |
inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y) | |
{ | |
static glm::uint64 const Mask[5] = | |
{ | |
0x5555555555555555, | |
0x3333333333333333, | |
0x0F0F0F0F0F0F0F0F, | |
0x00FF00FF00FF00FF, | |
0x0000FFFF0000FFFF | |
}; | |
glm::uint64 REG1 = x; | |
glm::uint64 REG2 = y; | |
for(int i = 4; i >= 0; --i) | |
{ | |
REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i]; | |
REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i]; | |
} | |
return REG1 | (REG2 << 1); | |
} | |
*/ | |
inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y) | |
{ | |
__m128i const Array = _mm_set_epi32(0, y, 0, x); | |
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); | |
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); | |
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); | |
__m128i const Mask1 = _mm_set1_epi32(0x33333333); | |
__m128i const Mask0 = _mm_set1_epi32(0x55555555); | |
__m128i Reg1; | |
__m128i Reg2; | |
// REG1 = x; | |
// REG2 = y; | |
Reg1 = _mm_load_si128(&Array); | |
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | |
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | |
Reg2 = _mm_slli_si128(Reg1, 2); | |
Reg1 = _mm_or_si128(Reg2, Reg1); | |
Reg1 = _mm_and_si128(Reg1, Mask4); | |
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | |
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | |
Reg2 = _mm_slli_si128(Reg1, 1); | |
Reg1 = _mm_or_si128(Reg2, Reg1); | |
Reg1 = _mm_and_si128(Reg1, Mask3); | |
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
Reg2 = _mm_slli_epi32(Reg1, 4); | |
Reg1 = _mm_or_si128(Reg2, Reg1); | |
Reg1 = _mm_and_si128(Reg1, Mask2); | |
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); | |
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); | |
Reg2 = _mm_slli_epi32(Reg1, 2); | |
Reg1 = _mm_or_si128(Reg2, Reg1); | |
Reg1 = _mm_and_si128(Reg1, Mask1); | |
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); | |
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); | |
Reg2 = _mm_slli_epi32(Reg1, 1); | |
Reg1 = _mm_or_si128(Reg2, Reg1); | |
Reg1 = _mm_and_si128(Reg1, Mask0); | |
//return REG1 | (REG2 << 1); | |
Reg2 = _mm_slli_epi32(Reg1, 1); | |
Reg2 = _mm_srli_si128(Reg2, 8); | |
Reg1 = _mm_or_si128(Reg1, Reg2); | |
__m128i Result; | |
_mm_store_si128(&Result, Reg1); | |
return *reinterpret_cast<glm::uint64*>(&Result); | |
} | |
inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y) | |
{ | |
__m128i const Array = _mm_set_epi32(0, y, 0, x); | |
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); | |
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); | |
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); | |
__m128i const Mask1 = _mm_set1_epi32(0x33333333); | |
__m128i const Mask0 = _mm_set1_epi32(0x55555555); | |
__m128i Reg1; | |
__m128i Reg2; | |
// REG1 = x; | |
// REG2 = y; | |
Reg1 = _mm_loadu_si128(&Array); | |
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | |
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | |
Reg2 = _mm_slli_si128(Reg1, 2); | |
Reg1 = _mm_or_si128(Reg2, Reg1); | |
Reg1 = _mm_and_si128(Reg1, Mask4); | |
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | |
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | |
Reg2 = _mm_slli_si128(Reg1, 1); | |
Reg1 = _mm_or_si128(Reg2, Reg1); | |
Reg1 = _mm_and_si128(Reg1, Mask3); | |
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
Reg2 = _mm_slli_epi32(Reg1, 4); | |
Reg1 = _mm_or_si128(Reg2, Reg1); | |
Reg1 = _mm_and_si128(Reg1, Mask2); | |
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); | |
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); | |
Reg2 = _mm_slli_epi32(Reg1, 2); | |
Reg1 = _mm_or_si128(Reg2, Reg1); | |
Reg1 = _mm_and_si128(Reg1, Mask1); | |
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); | |
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); | |
Reg2 = _mm_slli_epi32(Reg1, 1); | |
Reg1 = _mm_or_si128(Reg2, Reg1); | |
Reg1 = _mm_and_si128(Reg1, Mask0); | |
//return REG1 | (REG2 << 1); | |
Reg2 = _mm_slli_epi32(Reg1, 1); | |
Reg2 = _mm_srli_si128(Reg2, 8); | |
Reg1 = _mm_or_si128(Reg1, Reg2); | |
__m128i Result; | |
_mm_store_si128(&Result, Reg1); | |
return *reinterpret_cast<glm::uint64*>(&Result); | |
} | |
int test() | |
{ | |
int Error = 0; | |
/* | |
{ | |
for(glm::uint32 y = 0; y < (1 << 10); ++y) | |
for(glm::uint32 x = 0; x < (1 << 10); ++x) | |
{ | |
glm::uint64 A = glm::bitfieldInterleave(x, y); | |
glm::uint64 B = fastBitfieldInterleave(x, y); | |
//glm::uint64 C = loopBitfieldInterleave(x, y); | |
glm::uint64 D = interleaveBitfieldInterleave(x, y); | |
assert(A == B); | |
//assert(A == C); | |
assert(A == D); | |
# if GLM_ARCH & GLM_ARCH_SSE2_BIT | |
glm::uint64 E = sseBitfieldInterleave(x, y); | |
glm::uint64 F = sseUnalignedBitfieldInterleave(x, y); | |
assert(A == E); | |
assert(A == F); | |
__m128i G = glm_i128_interleave(_mm_set_epi32(0, y, 0, x)); | |
glm::uint64 Result[2]; | |
_mm_storeu_si128((__m128i*)Result, G); | |
assert(A == Result[0]); | |
# endif//GLM_ARCH & GLM_ARCH_SSE2_BIT | |
} | |
} | |
*/ | |
{ | |
for(glm::uint8 y = 0; y < 127; ++y) | |
for(glm::uint8 x = 0; x < 127; ++x) | |
{ | |
glm::uint64 A(glm::bitfieldInterleave(glm::u8vec2(x, y))); | |
glm::uint64 B(glm::bitfieldInterleave(glm::u16vec2(x, y))); | |
glm::uint64 C(glm::bitfieldInterleave(glm::u32vec2(x, y))); | |
Error += A == B ? 0 : 1; | |
Error += A == C ? 0 : 1; | |
glm::u32vec2 const& D = glm::bitfieldDeinterleave(C); | |
Error += D.x == x ? 0 : 1; | |
Error += D.y == y ? 0 : 1; | |
} | |
} | |
{ | |
for(glm::uint8 y = 0; y < 127; ++y) | |
for(glm::uint8 x = 0; x < 127; ++x) | |
{ | |
glm::int64 A(glm::bitfieldInterleave(glm::int8(x), glm::int8(y))); | |
glm::int64 B(glm::bitfieldInterleave(glm::int16(x), glm::int16(y))); | |
glm::int64 C(glm::bitfieldInterleave(glm::int32(x), glm::int32(y))); | |
Error += A == B ? 0 : 1; | |
Error += A == C ? 0 : 1; | |
} | |
} | |
return Error; | |
} | |
int perf() | |
{ | |
glm::uint32 x_max = 1 << 11; | |
glm::uint32 y_max = 1 << 10; | |
// ALU | |
std::vector<glm::uint64> Data(x_max * y_max); | |
std::vector<glm::u32vec2> Param(x_max * y_max); | |
for(glm::uint32 i = 0; i < Param.size(); ++i) | |
Param[i] = glm::u32vec2(i % x_max, i / y_max); | |
{ | |
std::clock_t LastTime = std::clock(); | |
for(std::size_t i = 0; i < Data.size(); ++i) | |
Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y); | |
std::clock_t Time = std::clock() - LastTime; | |
std::printf("glm::bitfieldInterleave Time %d clocks\n", static_cast<int>(Time)); | |
} | |
{ | |
std::clock_t LastTime = std::clock(); | |
for(std::size_t i = 0; i < Data.size(); ++i) | |
Data[i] = fastBitfieldInterleave(Param[i].x, Param[i].y); | |
std::clock_t Time = std::clock() - LastTime; | |
std::printf("fastBitfieldInterleave Time %d clocks\n", static_cast<int>(Time)); | |
} | |
/* | |
{ | |
std::clock_t LastTime = std::clock(); | |
for(std::size_t i = 0; i < Data.size(); ++i) | |
Data[i] = loopBitfieldInterleave(Param[i].x, Param[i].y); | |
std::clock_t Time = std::clock() - LastTime; | |
std::printf("loopBitfieldInterleave Time %d clocks\n", static_cast<int>(Time)); | |
} | |
*/ | |
{ | |
std::clock_t LastTime = std::clock(); | |
for(std::size_t i = 0; i < Data.size(); ++i) | |
Data[i] = interleaveBitfieldInterleave(Param[i].x, Param[i].y); | |
std::clock_t Time = std::clock() - LastTime; | |
std::printf("interleaveBitfieldInterleave Time %d clocks\n", static_cast<int>(Time)); | |
} | |
{ | |
std::clock_t LastTime = std::clock(); | |
for(std::size_t i = 0; i < Data.size(); ++i) | |
Data[i] = sseBitfieldInterleave(Param[i].x, Param[i].y); | |
std::clock_t Time = std::clock() - LastTime; | |
std::printf("sseBitfieldInterleave Time %d clocks\n", static_cast<int>(Time)); | |
} | |
{ | |
std::clock_t LastTime = std::clock(); | |
for(std::size_t i = 0; i < Data.size(); ++i) | |
Data[i] = sseUnalignedBitfieldInterleave(Param[i].x, Param[i].y); | |
std::clock_t Time = std::clock() - LastTime; | |
std::printf("sseUnalignedBitfieldInterleave Time %d clocks\n", static_cast<int>(Time)); | |
} | |
{ | |
std::clock_t LastTime = std::clock(); | |
for(std::size_t i = 0; i < Data.size(); ++i) | |
Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y, Param[i].x); | |
std::clock_t Time = std::clock() - LastTime; | |
std::printf("glm::detail::bitfieldInterleave Time %d clocks\n", static_cast<int>(Time)); | |
} | |
{ | |
// SIMD | |
std::vector<__m128i> SimdData; | |
SimdData.resize(static_cast<std::size_t>(x_max * y_max)); | |
std::vector<__m128i> SimdParam; | |
SimdParam.resize(static_cast<std::size_t>(x_max * y_max)); | |
for(std::size_t i = 0; i < SimdParam.size(); ++i) | |
SimdParam[i] = _mm_set_epi32(static_cast<int>(i % static_cast<std::size_t>(x_max)), 0, static_cast<int>(i / static_cast<std::size_t>(y_max)), 0); | |
std::clock_t LastTime = std::clock(); | |
for(std::size_t i = 0; i < SimdData.size(); ++i) | |
SimdData[i] = glm_i128_interleave(SimdParam[i]); | |
std::clock_t Time = std::clock() - LastTime; | |
std::printf("_mm_bit_interleave_si128 Time %d clocks\n", static_cast<int>(Time)); | |
} | |
return 0; | |
} | |
}//namespace bitfieldInterleave | |
namespace bitfieldInterleave5 | |
{ | |
GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave_u8vec2(glm::uint8 x, glm::uint8 y) | |
{ | |
glm::uint32 Result = (glm::uint32(y) << 16) | glm::uint32(x); | |
Result = ((Result << 4) | Result) & 0x0F0F0F0F; | |
Result = ((Result << 2) | Result) & 0x33333333; | |
Result = ((Result << 1) | Result) & 0x55555555; | |
return static_cast<glm::uint16>((Result & 0x0000FFFF) | (Result >> 15)); | |
} | |
GLM_FUNC_QUALIFIER glm::u8vec2 bitfieldDeinterleave_u8vec2(glm::uint16 InterleavedBitfield) | |
{ | |
glm::uint32 Result(InterleavedBitfield); | |
Result = ((Result << 15) | Result) & 0x55555555; | |
Result = ((Result >> 1) | Result) & 0x33333333; | |
Result = ((Result >> 2) | Result) & 0x0F0F0F0F; | |
Result = ((Result >> 4) | Result) & 0x00FF00FF; | |
return glm::u8vec2(Result & 0x0000FFFF, Result >> 16); | |
} | |
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave_u8vec4(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w) | |
{ | |
glm::uint64 Result = (glm::uint64(w) << 48) | (glm::uint64(z) << 32) | (glm::uint64(y) << 16) | glm::uint64(x); | |
Result = ((Result << 12) | Result) & 0x000F000F000F000Full; | |
Result = ((Result << 6) | Result) & 0x0303030303030303ull; | |
Result = ((Result << 3) | Result) & 0x1111111111111111ull; | |
const glm::uint32 a = static_cast<glm::uint32>((Result & 0x000000000000FFFF) >> ( 0 - 0)); | |
const glm::uint32 b = static_cast<glm::uint32>((Result & 0x00000000FFFF0000) >> (16 - 3)); | |
const glm::uint32 c = static_cast<glm::uint32>((Result & 0x0000FFFF00000000) >> (32 - 6)); | |
const glm::uint32 d = static_cast<glm::uint32>((Result & 0xFFFF000000000000) >> (48 - 12)); | |
return a | b | c | d; | |
} | |
GLM_FUNC_QUALIFIER glm::u8vec4 bitfieldDeinterleave_u8vec4(glm::uint32 InterleavedBitfield) | |
{ | |
glm::uint64 Result(InterleavedBitfield); | |
Result = ((Result << 15) | Result) & 0x9249249249249249ull; | |
Result = ((Result >> 1) | Result) & 0x30C30C30C30C30C3ull; | |
Result = ((Result >> 2) | Result) & 0xF00F00F00F00F00Full; | |
Result = ((Result >> 4) | Result) & 0x00FF0000FF0000FFull; | |
return glm::u8vec4( | |
(Result >> 0) & 0x000000000000FFFFull, | |
(Result >> 16) & 0x00000000FFFF0000ull, | |
(Result >> 32) & 0x0000FFFF00000000ull, | |
(Result >> 48) & 0xFFFF000000000000ull); | |
} | |
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave_u16vec2(glm::uint16 x, glm::uint16 y) | |
{ | |
glm::uint64 Result = (glm::uint64(y) << 32) | glm::uint64(x); | |
Result = ((Result << 8) | Result) & static_cast<glm::uint32>(0x00FF00FF00FF00FFull); | |
Result = ((Result << 4) | Result) & static_cast<glm::uint32>(0x0F0F0F0F0F0F0F0Full); | |
Result = ((Result << 2) | Result) & static_cast<glm::uint32>(0x3333333333333333ull); | |
Result = ((Result << 1) | Result) & static_cast<glm::uint32>(0x5555555555555555ull); | |
return static_cast<glm::uint32>((Result & 0x00000000FFFFFFFFull) | (Result >> 31)); | |
} | |
GLM_FUNC_QUALIFIER glm::u16vec2 bitfieldDeinterleave_u16vec2(glm::uint32 InterleavedBitfield) | |
{ | |
glm::uint64 Result(InterleavedBitfield); | |
Result = ((Result << 31) | Result) & 0x5555555555555555ull; | |
Result = ((Result >> 1) | Result) & 0x3333333333333333ull; | |
Result = ((Result >> 2) | Result) & 0x0F0F0F0F0F0F0F0Full; | |
Result = ((Result >> 4) | Result) & 0x00FF00FF00FF00FFull; | |
Result = ((Result >> 8) | Result) & 0x0000FFFF0000FFFFull; | |
return glm::u16vec2(Result & 0x00000000FFFFFFFFull, Result >> 32); | |
} | |
int test() | |
{ | |
int Error = 0; | |
for(glm::size_t j = 0; j < 256; ++j) | |
for(glm::size_t i = 0; i < 256; ++i) | |
{ | |
glm::uint16 A = bitfieldInterleave_u8vec2(glm::uint8(i), glm::uint8(j)); | |
glm::uint16 B = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j)); | |
Error += A == B ? 0 : 1; | |
glm::u8vec2 C = bitfieldDeinterleave_u8vec2(A); | |
Error += C.x == glm::uint8(i) ? 0 : 1; | |
Error += C.y == glm::uint8(j) ? 0 : 1; | |
} | |
for(glm::size_t j = 0; j < 256; ++j) | |
for(glm::size_t i = 0; i < 256; ++i) | |
{ | |
glm::uint32 A = bitfieldInterleave_u8vec4(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j)); | |
glm::uint32 B = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j)); | |
Error += A == B ? 0 : 1; | |
/* | |
glm::u8vec4 C = bitfieldDeinterleave_u8vec4(A); | |
Error += C.x == glm::uint8(i) ? 0 : 1; | |
Error += C.y == glm::uint8(j) ? 0 : 1; | |
Error += C.z == glm::uint8(i) ? 0 : 1; | |
Error += C.w == glm::uint8(j) ? 0 : 1; | |
*/ | |
} | |
for(glm::size_t j = 0; j < 256; ++j) | |
for(glm::size_t i = 0; i < 256; ++i) | |
{ | |
glm::uint32 A = bitfieldInterleave_u16vec2(glm::uint16(i), glm::uint16(j)); | |
glm::uint32 B = glm::bitfieldInterleave(glm::uint16(i), glm::uint16(j)); | |
Error += A == B ? 0 : 1; | |
} | |
return Error; | |
} | |
int perf_old_u8vec2(std::vector<glm::uint16>& Result) | |
{ | |
int Error = 0; | |
const std::clock_t BeginTime = std::clock(); | |
for(glm::size_t k = 0; k < 10000; ++k) | |
for(glm::size_t j = 0; j < 256; ++j) | |
for(glm::size_t i = 0; i < 256; ++i) | |
Error += Result[j * 256 + i] == glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j)) ? 0 : 1; | |
const std::clock_t EndTime = std::clock(); | |
std::printf("glm::bitfieldInterleave<u8vec2> Time %d clocks\n", static_cast<int>(EndTime - BeginTime)); | |
return Error; | |
} | |
int perf_new_u8vec2(std::vector<glm::uint16>& Result) | |
{ | |
int Error = 0; | |
const std::clock_t BeginTime = std::clock(); | |
for(glm::size_t k = 0; k < 10000; ++k) | |
for(glm::size_t j = 0; j < 256; ++j) | |
for(glm::size_t i = 0; i < 256; ++i) | |
Error += Result[j * 256 + i] == bitfieldInterleave_u8vec2(glm::uint8(i), glm::uint8(j)) ? 0 : 1; | |
const std::clock_t EndTime = std::clock(); | |
std::printf("bitfieldInterleave_u8vec2 Time %d clocks\n", static_cast<int>(EndTime - BeginTime)); | |
return Error; | |
} | |
int perf_old_u8vec4(std::vector<glm::uint32>& Result) | |
{ | |
int Error = 0; | |
const std::clock_t BeginTime = std::clock(); | |
for(glm::size_t k = 0; k < 10000; ++k) | |
for(glm::size_t j = 0; j < 256; ++j) | |
for(glm::size_t i = 0; i < 256; ++i) | |
Error += Result[j * 256 + i] == glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j)) ? 0 : 1; | |
const std::clock_t EndTime = std::clock(); | |
std::printf("glm::bitfieldInterleave<u8vec4> Time %d clocks\n", static_cast<int>(EndTime - BeginTime)); | |
return Error; | |
} | |
int perf_new_u8vec4(std::vector<glm::uint32>& Result) | |
{ | |
int Error = 0; | |
const std::clock_t BeginTime = std::clock(); | |
for(glm::size_t k = 0; k < 10000; ++k) | |
for(glm::size_t j = 0; j < 256; ++j) | |
for(glm::size_t i = 0; i < 256; ++i) | |
Error += Result[j * 256 + i] == bitfieldInterleave_u8vec4(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j)) ? 0 : 1; | |
const std::clock_t EndTime = std::clock(); | |
std::printf("bitfieldInterleave_u8vec4 Time %d clocks\n", static_cast<int>(EndTime - BeginTime)); | |
return Error; | |
} | |
int perf_old_u16vec2(std::vector<glm::uint32>& Result) | |
{ | |
int Error = 0; | |
const std::clock_t BeginTime = std::clock(); | |
for(glm::size_t k = 0; k < 10000; ++k) | |
for(glm::size_t j = 0; j < 256; ++j) | |
for(glm::size_t i = 0; i < 256; ++i) | |
Error += Result[j * 256 + i] == glm::bitfieldInterleave(glm::uint16(i), glm::uint16(j)) ? 0 : 1; | |
const std::clock_t EndTime = std::clock(); | |
std::printf("glm::bitfieldInterleave<u16vec2> Time %d clocks\n", static_cast<int>(EndTime - BeginTime)); | |
return Error; | |
} | |
int perf_new_u16vec2(std::vector<glm::uint32>& Result) | |
{ | |
int Error = 0; | |
const std::clock_t BeginTime = std::clock(); | |
for(glm::size_t k = 0; k < 10000; ++k) | |
for(glm::size_t j = 0; j < 256; ++j) | |
for(glm::size_t i = 0; i < 256; ++i) | |
Error += Result[j * 256 + i] == bitfieldInterleave_u16vec2(glm::uint16(i), glm::uint16(j)) ? 0 : 1; | |
const std::clock_t EndTime = std::clock(); | |
std::printf("bitfieldInterleave_u16vec2 Time %d clocks\n", static_cast<int>(EndTime - BeginTime)); | |
return Error; | |
} | |
int perf() | |
{ | |
int Error = 0; | |
std::printf("bitfieldInterleave perf: init\r"); | |
std::vector<glm::uint16> Result_u8vec2(256 * 256, 0); | |
for(glm::size_t j = 0; j < 256; ++j) | |
for(glm::size_t i = 0; i < 256; ++i) | |
Result_u8vec2[j * 256 + i] = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j)); | |
Error += perf_old_u8vec2(Result_u8vec2); | |
Error += perf_new_u8vec2(Result_u8vec2); | |
std::vector<glm::uint32> Result_u8vec4(256 * 256, 0); | |
for(glm::size_t j = 0; j < 256; ++j) | |
for(glm::size_t i = 0; i < 256; ++i) | |
Result_u8vec4[j * 256 + i] = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j)); | |
Error += perf_old_u8vec4(Result_u8vec4); | |
Error += perf_new_u8vec4(Result_u8vec4); | |
std::vector<glm::uint32> Result_u16vec2(256 * 256, 0); | |
for(glm::size_t j = 0; j < 256; ++j) | |
for(glm::size_t i = 0; i < 256; ++i) | |
Result_u16vec2[j * 256 + i] = glm::bitfieldInterleave(glm::uint16(i), glm::uint16(j)); | |
Error += perf_old_u16vec2(Result_u16vec2); | |
Error += perf_new_u16vec2(Result_u16vec2); | |
std::printf("bitfieldInterleave perf: %d Errors\n", Error); | |
return Error; | |
} | |
}//namespace bitfieldInterleave5 | |
static int test_bitfieldRotateRight() | |
{ | |
glm::ivec4 const A = glm::bitfieldRotateRight(glm::ivec4(2), 1); | |
glm::ivec4 const B = glm::ivec4(2) >> 1; | |
return A == B; | |
} | |
static int test_bitfieldRotateLeft() | |
{ | |
glm::ivec4 const A = glm::bitfieldRotateLeft(glm::ivec4(2), 1); | |
glm::ivec4 const B = glm::ivec4(2) << 1; | |
return A == B; | |
} | |
int main() | |
{ | |
int Error = 0; | |
/* Tests for a faster and to reserve bitfieldInterleave | |
Error += ::bitfieldInterleave5::test(); | |
Error += ::bitfieldInterleave5::perf(); | |
*/ | |
Error += ::mask::test(); | |
Error += ::bitfieldInterleave3::test(); | |
Error += ::bitfieldInterleave4::test(); | |
Error += ::bitfieldInterleave::test(); | |
Error += test_bitfieldRotateRight(); | |
Error += test_bitfieldRotateLeft(); | |
Error += ::mask::perf(); | |
Error += ::bitfieldInterleave::perf(); | |
return Error; | |
} | |