Spaces:
Running
on
Zero
Running
on
Zero
GaussianAnything-AIGC3D
/
submodules
/diff-surfel-rasterization
/third_party
/glm
/test
/gtc
/gtc_round.cpp
namespace isPowerOfTwo | |
{ | |
template<typename genType> | |
struct type | |
{ | |
genType Value; | |
bool Return; | |
}; | |
int test_int16() | |
{ | |
type<glm::int16> const Data[] = | |
{ | |
{0x0001, true}, | |
{0x0002, true}, | |
{0x0004, true}, | |
{0x0080, true}, | |
{0x0000, true}, | |
{0x0003, false} | |
}; | |
int Error(0); | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i) | |
{ | |
bool Result = glm::isPowerOfTwo(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
return Error; | |
} | |
int test_uint16() | |
{ | |
type<glm::uint16> const Data[] = | |
{ | |
{0x0001, true}, | |
{0x0002, true}, | |
{0x0004, true}, | |
{0x0000, true}, | |
{0x0000, true}, | |
{0x0003, false} | |
}; | |
int Error(0); | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i) | |
{ | |
bool Result = glm::isPowerOfTwo(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
return Error; | |
} | |
int test_int32() | |
{ | |
type<int> const Data[] = | |
{ | |
{0x00000001, true}, | |
{0x00000002, true}, | |
{0x00000004, true}, | |
{0x0000000f, false}, | |
{0x00000000, true}, | |
{0x00000003, false} | |
}; | |
int Error(0); | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) | |
{ | |
bool Result = glm::isPowerOfTwo(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) | |
{ | |
glm::bvec1 Result = glm::isPowerOfTwo(glm::ivec1(Data[i].Value)); | |
Error += glm::all(glm::equal(glm::bvec1(Data[i].Return), Result)) ? 0 : 1; | |
} | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) | |
{ | |
glm::bvec2 Result = glm::isPowerOfTwo(glm::ivec2(Data[i].Value)); | |
Error += glm::all(glm::equal(glm::bvec2(Data[i].Return), Result)) ? 0 : 1; | |
} | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) | |
{ | |
glm::bvec3 Result = glm::isPowerOfTwo(glm::ivec3(Data[i].Value)); | |
Error += glm::all(glm::equal(glm::bvec3(Data[i].Return), Result)) ? 0 : 1; | |
} | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) | |
{ | |
glm::bvec4 Result = glm::isPowerOfTwo(glm::ivec4(Data[i].Value)); | |
Error += glm::all(glm::equal(glm::bvec4(Data[i].Return), Result)) ? 0 : 1; | |
} | |
return Error; | |
} | |
int test_uint32() | |
{ | |
type<glm::uint> const Data[] = | |
{ | |
{0x00000001, true}, | |
{0x00000002, true}, | |
{0x00000004, true}, | |
{0x80000000, true}, | |
{0x00000000, true}, | |
{0x00000003, false} | |
}; | |
int Error(0); | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i) | |
{ | |
bool Result = glm::isPowerOfTwo(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
return Error; | |
} | |
int test() | |
{ | |
int Error(0); | |
Error += test_int16(); | |
Error += test_uint16(); | |
Error += test_int32(); | |
Error += test_uint32(); | |
return Error; | |
} | |
}//isPowerOfTwo | |
namespace ceilPowerOfTwo_advanced | |
{ | |
template<typename genIUType> | |
GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value) | |
{ | |
genIUType tmp = Value; | |
genIUType result = genIUType(0); | |
while(tmp) | |
{ | |
result = (tmp & (~tmp + 1)); // grab lowest bit | |
tmp &= ~result; // clear lowest bit | |
} | |
return result; | |
} | |
template<typename genType> | |
GLM_FUNC_QUALIFIER genType ceilPowerOfTwo_loop(genType value) | |
{ | |
return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1; | |
} | |
template<typename genType> | |
struct type | |
{ | |
genType Value; | |
genType Return; | |
}; | |
int test_int32() | |
{ | |
type<glm::int32> const Data[] = | |
{ | |
{0x0000ffff, 0x00010000}, | |
{-3, -4}, | |
{-8, -8}, | |
{0x00000001, 0x00000001}, | |
{0x00000002, 0x00000002}, | |
{0x00000004, 0x00000004}, | |
{0x00000007, 0x00000008}, | |
{0x0000fff0, 0x00010000}, | |
{0x0000f000, 0x00010000}, | |
{0x08000000, 0x08000000}, | |
{0x00000000, 0x00000000}, | |
{0x00000003, 0x00000004} | |
}; | |
int Error(0); | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i) | |
{ | |
glm::int32 Result = glm::ceilPowerOfTwo(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
return Error; | |
} | |
int test_uint32() | |
{ | |
type<glm::uint32> const Data[] = | |
{ | |
{0x00000001, 0x00000001}, | |
{0x00000002, 0x00000002}, | |
{0x00000004, 0x00000004}, | |
{0x00000007, 0x00000008}, | |
{0x0000ffff, 0x00010000}, | |
{0x0000fff0, 0x00010000}, | |
{0x0000f000, 0x00010000}, | |
{0x80000000, 0x80000000}, | |
{0x00000000, 0x00000000}, | |
{0x00000003, 0x00000004} | |
}; | |
int Error(0); | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i) | |
{ | |
glm::uint32 Result = glm::ceilPowerOfTwo(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
return Error; | |
} | |
int perf() | |
{ | |
int Error(0); | |
std::vector<glm::uint> v; | |
v.resize(100000000); | |
std::clock_t Timestramp0 = std::clock(); | |
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) | |
v[i] = ceilPowerOfTwo_loop(i); | |
std::clock_t Timestramp1 = std::clock(); | |
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) | |
v[i] = glm::ceilPowerOfTwo(i); | |
std::clock_t Timestramp2 = std::clock(); | |
std::printf("ceilPowerOfTwo_loop: %d clocks\n", static_cast<int>(Timestramp1 - Timestramp0)); | |
std::printf("glm::ceilPowerOfTwo: %d clocks\n", static_cast<int>(Timestramp2 - Timestramp1)); | |
return Error; | |
} | |
int test() | |
{ | |
int Error(0); | |
Error += test_int32(); | |
Error += test_uint32(); | |
return Error; | |
} | |
}//namespace ceilPowerOfTwo_advanced | |
namespace roundPowerOfTwo | |
{ | |
int test() | |
{ | |
int Error = 0; | |
glm::uint32 const A = glm::roundPowerOfTwo(7u); | |
Error += A == 8u ? 0 : 1; | |
glm::uint32 const B = glm::roundPowerOfTwo(15u); | |
Error += B == 16u ? 0 : 1; | |
glm::uint32 const C = glm::roundPowerOfTwo(31u); | |
Error += C == 32u ? 0 : 1; | |
glm::uint32 const D = glm::roundPowerOfTwo(9u); | |
Error += D == 8u ? 0 : 1; | |
glm::uint32 const E = glm::roundPowerOfTwo(17u); | |
Error += E == 16u ? 0 : 1; | |
glm::uint32 const F = glm::roundPowerOfTwo(33u); | |
Error += F == 32u ? 0 : 1; | |
return Error; | |
} | |
}//namespace roundPowerOfTwo | |
namespace floorPowerOfTwo | |
{ | |
int test() | |
{ | |
int Error = 0; | |
glm::uint32 const A = glm::floorPowerOfTwo(7u); | |
Error += A == 4u ? 0 : 1; | |
glm::uint32 const B = glm::floorPowerOfTwo(15u); | |
Error += B == 8u ? 0 : 1; | |
glm::uint32 const C = glm::floorPowerOfTwo(31u); | |
Error += C == 16u ? 0 : 1; | |
return Error; | |
} | |
}//namespace floorPowerOfTwo | |
namespace ceilPowerOfTwo | |
{ | |
int test() | |
{ | |
int Error = 0; | |
glm::uint32 const A = glm::ceilPowerOfTwo(7u); | |
Error += A == 8u ? 0 : 1; | |
glm::uint32 const B = glm::ceilPowerOfTwo(15u); | |
Error += B == 16u ? 0 : 1; | |
glm::uint32 const C = glm::ceilPowerOfTwo(31u); | |
Error += C == 32u ? 0 : 1; | |
return Error; | |
} | |
}//namespace ceilPowerOfTwo | |
namespace floorMultiple | |
{ | |
template<typename genType> | |
struct type | |
{ | |
genType Source; | |
genType Multiple; | |
genType Return; | |
genType Epsilon; | |
}; | |
int test_float() | |
{ | |
type<glm::float64> const Data[] = | |
{ | |
{3.4, 0.3, 3.3, 0.0001}, | |
{-1.4, 0.3, -1.5, 0.0001}, | |
}; | |
int Error(0); | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::float64>); i < n; ++i) | |
{ | |
glm::float64 Result = glm::floorMultiple(Data[i].Source, Data[i].Multiple); | |
Error += glm::epsilonEqual(Data[i].Return, Result, Data[i].Epsilon) ? 0 : 1; | |
} | |
return Error; | |
} | |
int test() | |
{ | |
int Error(0); | |
Error += test_float(); | |
return Error; | |
} | |
}//namespace floorMultiple | |
namespace ceilMultiple | |
{ | |
template<typename genType> | |
struct type | |
{ | |
genType Source; | |
genType Multiple; | |
genType Return; | |
genType Epsilon; | |
}; | |
int test_float() | |
{ | |
type<glm::float64> const Data[] = | |
{ | |
{3.4, 0.3, 3.6, 0.0001}, | |
{-1.4, 0.3, -1.2, 0.0001}, | |
}; | |
int Error(0); | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::float64>); i < n; ++i) | |
{ | |
glm::float64 Result = glm::ceilMultiple(Data[i].Source, Data[i].Multiple); | |
Error += glm::epsilonEqual(Data[i].Return, Result, Data[i].Epsilon) ? 0 : 1; | |
} | |
return Error; | |
} | |
int test_int() | |
{ | |
type<int> const Data[] = | |
{ | |
{3, 4, 4, 0}, | |
{7, 4, 8, 0}, | |
{5, 4, 8, 0}, | |
{1, 4, 4, 0}, | |
{1, 3, 3, 0}, | |
{4, 3, 6, 0}, | |
{4, 1, 4, 0}, | |
{1, 1, 1, 0}, | |
{7, 1, 7, 0}, | |
}; | |
int Error(0); | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) | |
{ | |
int Result = glm::ceilMultiple(Data[i].Source, Data[i].Multiple); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
return Error; | |
} | |
int test() | |
{ | |
int Error(0); | |
Error += test_int(); | |
Error += test_float(); | |
return Error; | |
} | |
}//namespace ceilMultiple | |
int main() | |
{ | |
int Error(0); | |
Error += isPowerOfTwo::test(); | |
Error += floorPowerOfTwo::test(); | |
Error += roundPowerOfTwo::test(); | |
Error += ceilPowerOfTwo::test(); | |
Error += ceilPowerOfTwo_advanced::test(); | |
Error += ceilPowerOfTwo_advanced::perf(); | |
Error += floorMultiple::test(); | |
Error += ceilMultiple::test(); | |
return Error; | |
} | |