yslan's picture
init
7f51798
raw
history blame
9.83 kB
import glob
import io
import os
import re
import zipfile
from abc import ABC, abstractmethod
from contextlib import contextmanager
from dataclasses import dataclass
from typing import Dict, Iterator, List, Optional, Sequence, Tuple
import numpy as np
@dataclass
class NumpyArrayInfo:
"""
Information about an array in an npz file.
"""
name: str
dtype: np.dtype
shape: Tuple[int]
@classmethod
def infos_from_first_file(cls, glob_path: str) -> Dict[str, "NumpyArrayInfo"]:
paths, _ = _npz_paths_and_length(glob_path)
return cls.infos_from_file(paths[0])
@classmethod
def infos_from_file(cls, npz_path: str) -> Dict[str, "NumpyArrayInfo"]:
"""
Extract the info of every array in an npz file.
"""
if not os.path.exists(npz_path):
raise FileNotFoundError(f"batch of samples was not found: {npz_path}")
results = {}
with open(npz_path, "rb") as f:
with zipfile.ZipFile(f, "r") as zip_f:
for name in zip_f.namelist():
if not name.endswith(".npy"):
continue
key_name = name[: -len(".npy")]
with zip_f.open(name, "r") as arr_f:
version = np.lib.format.read_magic(arr_f)
if version == (1, 0):
header = np.lib.format.read_array_header_1_0(arr_f)
elif version == (2, 0):
header = np.lib.format.read_array_header_2_0(arr_f)
else:
raise ValueError(f"unknown numpy array version: {version}")
shape, _, dtype = header
results[key_name] = cls(name=key_name, dtype=dtype, shape=shape)
return results
@property
def elem_shape(self) -> Tuple[int]:
return self.shape[1:]
def validate(self):
if self.name in {"R", "G", "B"}:
if len(self.shape) != 2:
raise ValueError(
f"expecting exactly 2-D shape for '{self.name}' but got: {self.shape}"
)
elif self.name == "arr_0":
if len(self.shape) < 2:
raise ValueError(f"expecting at least 2-D shape but got: {self.shape}")
elif len(self.shape) == 3:
# For audio, we require continuous samples.
if not np.issubdtype(self.dtype, np.floating):
raise ValueError(
f"invalid dtype for audio batch: {self.dtype} (expected float)"
)
elif self.dtype != np.uint8:
raise ValueError(f"invalid dtype for image batch: {self.dtype} (expected uint8)")
class NpzStreamer:
def __init__(self, glob_path: str):
self.paths, self.trunc_length = _npz_paths_and_length(glob_path)
self.infos = NumpyArrayInfo.infos_from_file(self.paths[0])
def keys(self) -> List[str]:
return list(self.infos.keys())
def stream(self, batch_size: int, keys: Sequence[str]) -> Iterator[Dict[str, np.ndarray]]:
cur_batch = None
num_remaining = self.trunc_length
for path in self.paths:
if num_remaining is not None and num_remaining <= 0:
break
with open_npz_arrays(path, keys) as readers:
combined_reader = CombinedReader(keys, readers)
while num_remaining is None or num_remaining > 0:
read_bs = batch_size
if cur_batch is not None:
read_bs -= _dict_batch_size(cur_batch)
if num_remaining is not None:
read_bs = min(read_bs, num_remaining)
batch = combined_reader.read_batch(read_bs)
if batch is None:
break
if num_remaining is not None:
num_remaining -= _dict_batch_size(batch)
if cur_batch is None:
cur_batch = batch
else:
cur_batch = {
# pylint: disable=unsubscriptable-object
k: np.concatenate([cur_batch[k], v], axis=0)
for k, v in batch.items()
}
if _dict_batch_size(cur_batch) == batch_size:
yield cur_batch
cur_batch = None
if cur_batch is not None:
yield cur_batch
def _npz_paths_and_length(glob_path: str) -> Tuple[List[str], Optional[int]]:
# Match slice syntax like path[:100].
count_match = re.match("^(.*)\\[:([0-9]*)\\]$", glob_path)
if count_match:
raw_path = count_match[1]
max_count = int(count_match[2])
else:
raw_path = glob_path
max_count = None
paths = sorted(glob.glob(raw_path))
if not len(paths):
raise ValueError(f"no paths found matching: {glob_path}")
return paths, max_count
class NpzArrayReader(ABC):
@abstractmethod
def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
pass
class StreamingNpzArrayReader(NpzArrayReader):
def __init__(self, arr_f, shape, dtype):
self.arr_f = arr_f
self.shape = shape
self.dtype = dtype
self.idx = 0
def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
if self.idx >= self.shape[0]:
return None
bs = min(batch_size, self.shape[0] - self.idx)
self.idx += bs
if self.dtype.itemsize == 0:
return np.ndarray([bs, *self.shape[1:]], dtype=self.dtype)
read_count = bs * np.prod(self.shape[1:])
read_size = int(read_count * self.dtype.itemsize)
data = _read_bytes(self.arr_f, read_size, "array data")
return np.frombuffer(data, dtype=self.dtype).reshape([bs, *self.shape[1:]])
class MemoryNpzArrayReader(NpzArrayReader):
def __init__(self, arr):
self.arr = arr
self.idx = 0
@classmethod
def load(cls, path: str, arr_name: str):
with open(path, "rb") as f:
arr = np.load(f)[arr_name]
return cls(arr)
def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
if self.idx >= self.arr.shape[0]:
return None
res = self.arr[self.idx : self.idx + batch_size]
self.idx += batch_size
return res
@contextmanager
def open_npz_arrays(path: str, arr_names: Sequence[str]) -> List[NpzArrayReader]:
if not len(arr_names):
yield []
return
arr_name = arr_names[0]
with open_array(path, arr_name) as arr_f:
version = np.lib.format.read_magic(arr_f)
header = None
if version == (1, 0):
header = np.lib.format.read_array_header_1_0(arr_f)
elif version == (2, 0):
header = np.lib.format.read_array_header_2_0(arr_f)
if header is None:
reader = MemoryNpzArrayReader.load(path, arr_name)
else:
shape, fortran, dtype = header
if fortran or dtype.hasobject:
reader = MemoryNpzArrayReader.load(path, arr_name)
else:
reader = StreamingNpzArrayReader(arr_f, shape, dtype)
with open_npz_arrays(path, arr_names[1:]) as next_readers:
yield [reader] + next_readers
class CombinedReader:
def __init__(self, keys: List[str], readers: List[NpzArrayReader]):
self.keys = keys
self.readers = readers
def read_batch(self, batch_size: int) -> Optional[Dict[str, np.ndarray]]:
batches = [r.read_batch(batch_size) for r in self.readers]
any_none = any(x is None for x in batches)
all_none = all(x is None for x in batches)
if any_none != all_none:
raise RuntimeError("different keys had different numbers of elements")
if any_none:
return None
if any(len(x) != len(batches[0]) for x in batches):
raise RuntimeError("different keys had different numbers of elements")
return dict(zip(self.keys, batches))
def _read_bytes(fp, size, error_template="ran out of data"):
"""
Copied from: https://github.com/numpy/numpy/blob/fb215c76967739268de71aa4bda55dd1b062bc2e/numpy/lib/format.py#L788-L886
Read from file-like object until size bytes are read.
Raises ValueError if not EOF is encountered before size bytes are read.
Non-blocking objects only supported if they derive from io objects.
Required as e.g. ZipExtFile in python 2.6 can return less data than
requested.
"""
data = bytes()
while True:
# io files (default in python3) return None or raise on
# would-block, python2 file will truncate, probably nothing can be
# done about that. note that regular files can't be non-blocking
try:
r = fp.read(size - len(data))
data += r
if len(r) == 0 or len(data) == size:
break
except io.BlockingIOError:
pass
if len(data) != size:
msg = "EOF: reading %s, expected %d bytes got %d"
raise ValueError(msg % (error_template, size, len(data)))
else:
return data
@contextmanager
def open_array(path: str, arr_name: str):
with open(path, "rb") as f:
with zipfile.ZipFile(f, "r") as zip_f:
if f"{arr_name}.npy" not in zip_f.namelist():
raise ValueError(f"missing {arr_name} in npz file")
with zip_f.open(f"{arr_name}.npy", "r") as arr_f:
yield arr_f
def _dict_batch_size(objs: Dict[str, np.ndarray]) -> int:
return len(next(iter(objs.values())))