Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision import models | |
class InceptionV3(nn.Module): | |
"""Pretrained InceptionV3 network returning feature maps""" | |
# Index of default block of inception to return, | |
# corresponds to output of final average pooling | |
DEFAULT_BLOCK_INDEX = 3 | |
# Maps feature dimensionality to their output blocks indices | |
BLOCK_INDEX_BY_DIM = { | |
64: 0, # First max pooling features | |
192: 1, # Second max pooling featurs | |
768: 2, # Pre-aux classifier features | |
2048: 3 # Final average pooling features | |
} | |
def __init__(self, | |
output_blocks=[DEFAULT_BLOCK_INDEX], | |
resize_input=True, | |
normalize_input=True, | |
requires_grad=False): | |
"""Build pretrained InceptionV3 | |
Parameters | |
---------- | |
output_blocks : list of int | |
Indices of blocks to return features of. Possible values are: | |
- 0: corresponds to output of first max pooling | |
- 1: corresponds to output of second max pooling | |
- 2: corresponds to output which is fed to aux classifier | |
- 3: corresponds to output of final average pooling | |
resize_input : bool | |
If true, bilinearly resizes input to width and height 299 before | |
feeding input to model. As the network without fully connected | |
layers is fully convolutional, it should be able to handle inputs | |
of arbitrary size, so resizing might not be strictly needed | |
normalize_input : bool | |
If true, scales the input from range (0, 1) to the range the | |
pretrained Inception network expects, namely (-1, 1) | |
requires_grad : bool | |
If true, parameters of the model require gradient. Possibly useful | |
for finetuning the network | |
""" | |
super(InceptionV3, self).__init__() | |
self.resize_input = resize_input | |
self.normalize_input = normalize_input | |
self.output_blocks = sorted(output_blocks) | |
self.last_needed_block = max(output_blocks) | |
assert self.last_needed_block <= 3, \ | |
'Last possible output block index is 3' | |
self.blocks = nn.ModuleList() | |
inception = models.inception_v3(pretrained=True) | |
# Block 0: input to maxpool1 | |
block0 = [ | |
inception.Conv2d_1a_3x3, | |
inception.Conv2d_2a_3x3, | |
inception.Conv2d_2b_3x3, | |
nn.MaxPool2d(kernel_size=3, stride=2) | |
] | |
self.blocks.append(nn.Sequential(*block0)) | |
# Block 1: maxpool1 to maxpool2 | |
if self.last_needed_block >= 1: | |
block1 = [ | |
inception.Conv2d_3b_1x1, | |
inception.Conv2d_4a_3x3, | |
nn.MaxPool2d(kernel_size=3, stride=2) | |
] | |
self.blocks.append(nn.Sequential(*block1)) | |
# Block 2: maxpool2 to aux classifier | |
if self.last_needed_block >= 2: | |
block2 = [ | |
inception.Mixed_5b, | |
inception.Mixed_5c, | |
inception.Mixed_5d, | |
inception.Mixed_6a, | |
inception.Mixed_6b, | |
inception.Mixed_6c, | |
inception.Mixed_6d, | |
inception.Mixed_6e, | |
] | |
self.blocks.append(nn.Sequential(*block2)) | |
# Block 3: aux classifier to final avgpool | |
if self.last_needed_block >= 3: | |
block3 = [ | |
inception.Mixed_7a, | |
inception.Mixed_7b, | |
inception.Mixed_7c, | |
nn.AdaptiveAvgPool2d(output_size=(1, 1)) | |
] | |
self.blocks.append(nn.Sequential(*block3)) | |
for param in self.parameters(): | |
param.requires_grad = requires_grad | |
def forward(self, inp): | |
"""Get Inception feature maps | |
Parameters | |
---------- | |
inp : torch.autograd.Variable | |
Input tensor of shape Bx3xHxW. Values are expected to be in | |
range (0.0, 1.0) | |
Returns | |
------- | |
List of torch.autograd.Variable, corresponding to the selected output | |
block, sorted ascending by index | |
""" | |
outp = [] | |
x = inp | |
if self.resize_input: | |
x = F.interpolate(x, | |
size=(299, 299), | |
mode='bilinear', | |
align_corners=False) | |
if self.normalize_input: | |
x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1) | |
for idx, block in enumerate(self.blocks): | |
x = block(x) | |
if idx in self.output_blocks: | |
outp.append(x) | |
if idx == self.last_needed_block: | |
break | |
return outp | |