Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
from collections import OrderedDict | |
class LeNet5(nn.Module): | |
""" | |
Input - 1x32x32 | |
C1 - 6@28x28 (5x5 kernel) | |
tanh | |
S2 - 6@14x14 (2x2 kernel, stride 2) Subsampling | |
C3 - 16@10x10 (5x5 kernel, complicated shit) | |
tanh | |
S4 - 16@5x5 (2x2 kernel, stride 2) Subsampling | |
C5 - 120@1x1 (5x5 kernel) | |
F6 - 84 | |
tanh | |
F7 - 10 (Output) | |
""" | |
def __init__(self): | |
super(LeNet5, self).__init__() | |
self.convnet = nn.Sequential(OrderedDict([ | |
('c1', nn.Conv2d(1, 6, kernel_size=(5, 5))), | |
('tanh1', nn.Tanh()), | |
('s2', nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=1)), | |
('c3', nn.Conv2d(6, 16, kernel_size=(5, 5))), | |
('tanh3', nn.Tanh()), | |
('s4', nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=1)), | |
('c5', nn.Conv2d(16, 120, kernel_size=(5, 5))), | |
('tanh5', nn.Tanh()) | |
])) | |
self.fc = nn.Sequential(OrderedDict([ | |
('f6', nn.Linear(120, 84)), | |
('tanh6', nn.Tanh()), | |
('f7', nn.Linear(84, 10)), | |
('sig7', nn.LogSoftmax(dim=-1)) | |
])) | |
def forward(self, img): | |
output = self.convnet(img) | |
output = output.view(img.size(0), -1) | |
output = self.fc(output) | |
return output | |
def extract_features(self, img): | |
output = self.convnet(img.float()) | |
output = output.view(img.size(0), -1) | |
output = self.fc[1](self.fc[0](output)) | |
return output | |