Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch as th | |
import torch.nn as nn | |
from ldm.modules.diffusionmodules.util import ( | |
conv_nd, | |
linear, | |
zero_module, | |
timestep_embedding, | |
) | |
from einops import rearrange, repeat | |
from torchvision.utils import make_grid | |
from ldm.modules.attention import SpatialTransformer | |
# from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock | |
from guided_diffusion.unet import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock | |
# from ldm.models.diffusion.ddpm import LatentDiffusion | |
from ldm.util import log_txt_as_img, exists # , instantiate_from_config | |
# from ldm.models.diffusion.ddim import DDIMSampler | |
from pdb import set_trace as st | |
class ControlledUnetModel(UNetModel): | |
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, get_attr='', **kwargs): | |
if get_attr != '': # not breaking the forward hooks | |
return getattr(self, get_attr) | |
hs = [] | |
with torch.no_grad(): # fix middle_block, SD | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
if self.roll_out: | |
x = rearrange(x, 'b (n c) h w->b c h (n w)', n=3) # torch.Size([84, 4, 32, 96]) | |
h = x.type(self.dtype) | |
for module in self.input_blocks: | |
h = module(h, emb, context) | |
hs.append(h) | |
h = self.middle_block(h, emb, context) | |
assert control is not None | |
# if control is not None: | |
h += control.pop() | |
for i, module in enumerate(self.output_blocks): | |
if only_mid_control or control is None: | |
h = torch.cat([h, hs.pop()], dim=1) | |
else: | |
# st() | |
h = torch.cat([h, hs.pop() + control.pop()], dim=1) | |
h = module(h, emb, context) | |
h = h.type(x.dtype) | |
h = self.out(h) | |
if self.roll_out: | |
return rearrange(h, 'b c h (n w) -> b (n c) h w', n=3) | |
return h | |
class ControlNet(nn.Module): | |
def __init__( | |
self, | |
image_size, | |
in_channels, | |
model_channels, | |
hint_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
use_checkpoint=False, | |
use_fp16=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_new_attention_order=False, | |
# * new keys introduced in LDM | |
use_spatial_transformer=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
legacy=True, | |
disable_self_attentions=None, | |
num_attention_blocks=None, | |
disable_middle_self_attn=False, | |
use_linear_in_transformer=False, | |
roll_out=False, | |
): | |
super().__init__() | |
self.roll_out = roll_out | |
if use_spatial_transformer: | |
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' | |
if context_dim is not None: | |
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | |
from omegaconf.listconfig import ListConfig | |
if type(context_dim) == ListConfig: | |
context_dim = list(context_dim) | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
if num_head_channels == -1: | |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
self.dims = dims | |
self.image_size = image_size | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
if isinstance(num_res_blocks, int): | |
self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
else: | |
if len(num_res_blocks) != len(channel_mult): | |
raise ValueError("provide num_res_blocks either as an int (globally constant) or " | |
"as a list/tuple (per-level) with the same length as channel_mult") | |
self.num_res_blocks = num_res_blocks | |
if disable_self_attentions is not None: | |
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
assert len(disable_self_attentions) == len(channel_mult) | |
if num_attention_blocks is not None: | |
assert len(num_attention_blocks) == len(self.num_res_blocks) | |
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) | |
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " | |
f"This option has LESS priority than attention_resolutions {attention_resolutions}, " | |
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " | |
f"attention will still not be set.") | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
# self.use_checkpoint = use_checkpoint | |
self.use_checkpoint = False | |
self.dtype = th.float16 if use_fp16 else th.float32 | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.predict_codebook_ids = n_embed is not None | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) | |
self.input_hint_block = TimestepEmbedSequential( # f=8 | |
conv_nd(dims, hint_channels, 16, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 16, 16, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 16, 32, 3, padding=1, stride=2), | |
nn.SiLU(), | |
conv_nd(dims, 32, 32, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 32, 96, 3, padding=1, stride=2), | |
nn.SiLU(), | |
conv_nd(dims, 96, 96, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 96, 256, 3, padding=1, stride=2), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for nr in range(self.num_res_blocks[level]): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
if exists(disable_self_attentions): | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
layers.append( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self.zero_convs.append(self.make_zero_conv(ch)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
self.zero_convs.append(self.make_zero_conv(ch)) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
self.middle_block = TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
) | |
self.middle_block_out = self.make_zero_conv(ch) | |
self._feature_size += ch | |
def make_zero_conv(self, channels): | |
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) | |
def forward(self, x, hint, timesteps, context, **kwargs): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) # time condition embedding | |
guided_hint = self.input_hint_block(hint, emb, context) # B 320 8 8, if input resolution = 64 | |
if self.roll_out: | |
x = rearrange(x, 'b (n c) h w->b c h (n w)', n=3) # torch.Size([84, 4, 32, 96]) | |
guided_hint = repeat(guided_hint, 'b c h w -> b c h (n w)', n=3) # torch.Size([84, 4, 32, 96]) | |
outs = [] | |
h = x.type(self.dtype) | |
for module, zero_conv in zip(self.input_blocks, self.zero_convs): | |
if guided_hint is not None: # f=8, shall send in 128x128 img_sr | |
h = module(h, emb, context) # B 320 16 16 | |
h += guided_hint | |
guided_hint = None | |
else: | |
h = module(h, emb, context) | |
outs.append(zero_conv(h, emb, context)) | |
h = self.middle_block(h, emb, context) | |
outs.append(self.middle_block_out(h, emb, context)) | |
return outs | |
# ! do not support PL here | |
# class ControlLDM(LatentDiffusion): | |
# def __init__(self, control_stage_config, control_key, only_mid_control, *args, **kwargs): | |
# super().__init__(*args, **kwargs) | |
# self.control_model = instantiate_from_config(control_stage_config) | |
# self.control_key = control_key | |
# self.only_mid_control = only_mid_control | |
# self.control_scales = [1.0] * 13 | |
# @torch.no_grad() | |
# def get_input(self, batch, k, bs=None, *args, **kwargs): | |
# x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs) | |
# control = batch[self.control_key] | |
# if bs is not None: | |
# control = control[:bs] | |
# control = control.to(self.device) | |
# control = einops.rearrange(control, 'b h w c -> b c h w') | |
# control = control.to(memory_format=torch.contiguous_format).float() | |
# return x, dict(c_crossattn=[c], c_concat=[control]) | |
# def apply_model(self, x_noisy, t, cond, *args, **kwargs): | |
# assert isinstance(cond, dict) | |
# diffusion_model = self.model.diffusion_model | |
# cond_txt = torch.cat(cond['c_crossattn'], 1) | |
# if cond['c_concat'] is None: | |
# eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control) | |
# else: | |
# control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt) | |
# control = [c * scale for c, scale in zip(control, self.control_scales)] | |
# eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control) | |
# return eps | |
# @torch.no_grad() | |
# def get_unconditional_conditioning(self, N): | |
# return self.get_learned_conditioning([""] * N) | |
# @torch.no_grad() | |
# def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None, | |
# quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, | |
# plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None, | |
# use_ema_scope=True, | |
# **kwargs): | |
# use_ddim = ddim_steps is not None | |
# log = dict() | |
# z, c = self.get_input(batch, self.first_stage_key, bs=N) | |
# c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N] | |
# N = min(z.shape[0], N) | |
# n_row = min(z.shape[0], n_row) | |
# log["reconstruction"] = self.decode_first_stage(z) | |
# log["control"] = c_cat * 2.0 - 1.0 | |
# log["conditioning"] = log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16) | |
# if plot_diffusion_rows: | |
# # get diffusion row | |
# diffusion_row = list() | |
# z_start = z[:n_row] | |
# for t in range(self.num_timesteps): | |
# if t % self.log_every_t == 0 or t == self.num_timesteps - 1: | |
# t = repeat(torch.tensor([t]), '1 -> b', b=n_row) | |
# t = t.to(self.device).long() | |
# noise = torch.randn_like(z_start) | |
# z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) | |
# diffusion_row.append(self.decode_first_stage(z_noisy)) | |
# diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W | |
# diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') | |
# diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') | |
# diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) | |
# log["diffusion_row"] = diffusion_grid | |
# if sample: | |
# # get denoise row | |
# samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, | |
# batch_size=N, ddim=use_ddim, | |
# ddim_steps=ddim_steps, eta=ddim_eta) | |
# x_samples = self.decode_first_stage(samples) | |
# log["samples"] = x_samples | |
# if plot_denoise_rows: | |
# denoise_grid = self._get_denoise_row_from_list(z_denoise_row) | |
# log["denoise_row"] = denoise_grid | |
# if unconditional_guidance_scale > 1.0: | |
# uc_cross = self.get_unconditional_conditioning(N) | |
# uc_cat = c_cat # torch.zeros_like(c_cat) | |
# uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]} | |
# samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, | |
# batch_size=N, ddim=use_ddim, | |
# ddim_steps=ddim_steps, eta=ddim_eta, | |
# unconditional_guidance_scale=unconditional_guidance_scale, | |
# unconditional_conditioning=uc_full, | |
# ) | |
# x_samples_cfg = self.decode_first_stage(samples_cfg) | |
# log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg | |
# return log | |
# @torch.no_grad() | |
# def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs): | |
# ddim_sampler = DDIMSampler(self) | |
# b, c, h, w = cond["c_concat"][0].shape | |
# shape = (self.channels, h // 8, w // 8) | |
# samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs) | |
# return samples, intermediates | |
# def configure_optimizers(self): | |
# lr = self.learning_rate | |
# params = list(self.control_model.parameters()) | |
# if not self.sd_locked: | |
# params += list(self.model.diffusion_model.output_blocks.parameters()) | |
# params += list(self.model.diffusion_model.out.parameters()) | |
# opt = torch.optim.AdamW(params, lr=lr) | |
# return opt | |
# def low_vram_shift(self, is_diffusing): | |
# if is_diffusing: | |
# self.model = self.model.cuda() | |
# self.control_model = self.control_model.cuda() | |
# self.first_stage_model = self.first_stage_model.cpu() | |
# self.cond_stage_model = self.cond_stage_model.cpu() | |
# else: | |
# self.model = self.model.cpu() | |
# self.control_model = self.control_model.cpu() | |
# self.first_stage_model = self.first_stage_model.cuda() | |
# self.cond_stage_model = self.cond_stage_model.cuda() | |