Spaces:
Running
on
Zero
Running
on
Zero
import functools | |
import json | |
import os | |
from pathlib import Path | |
from pdb import set_trace as st | |
import torchvision | |
import blobfile as bf | |
import imageio | |
import numpy as np | |
import torch as th | |
import torch.distributed as dist | |
import torchvision | |
from PIL import Image | |
from torch.nn.parallel.distributed import DistributedDataParallel as DDP | |
from tqdm import tqdm | |
from guided_diffusion.fp16_util import MixedPrecisionTrainer | |
from guided_diffusion import dist_util, logger | |
from guided_diffusion.train_util import (calc_average_loss, | |
log_rec3d_loss_dict, | |
find_resume_checkpoint) | |
from torch.optim import AdamW | |
from ..train_util import TrainLoopBasic, TrainLoop3DRec | |
import vision_aided_loss | |
from dnnlib.util import calculate_adaptive_weight | |
def get_blob_logdir(): | |
# You can change this to be a separate path to save checkpoints to | |
# a blobstore or some external drive. | |
return logger.get_dir() | |
from ..train_util_cvD import TrainLoop3DcvD | |
# from .nvD import | |
class TrainLoop3DcvD_nvsD_canoD_canomask(TrainLoop3DcvD): | |
# class TrainLoop3DcvD_nvsD_canoD(): | |
def __init__(self, | |
*, | |
rec_model, | |
loss_class, | |
data, | |
eval_data, | |
batch_size, | |
microbatch, | |
lr, | |
ema_rate, | |
log_interval, | |
eval_interval, | |
save_interval, | |
resume_checkpoint, | |
use_fp16=False, | |
fp16_scale_growth=0.001, | |
weight_decay=0, | |
lr_anneal_steps=0, | |
iterations=10001, | |
load_submodule_name='', | |
ignore_resume_opt=False, | |
use_amp=False, | |
**kwargs): | |
super().__init__(rec_model=rec_model, | |
loss_class=loss_class, | |
data=data, | |
eval_data=eval_data, | |
batch_size=batch_size, | |
microbatch=microbatch, | |
lr=lr, | |
ema_rate=ema_rate, | |
log_interval=log_interval, | |
eval_interval=eval_interval, | |
save_interval=save_interval, | |
resume_checkpoint=resume_checkpoint, | |
use_fp16=use_fp16, | |
fp16_scale_growth=fp16_scale_growth, | |
weight_decay=weight_decay, | |
lr_anneal_steps=lr_anneal_steps, | |
iterations=iterations, | |
load_submodule_name=load_submodule_name, | |
ignore_resume_opt=ignore_resume_opt, | |
use_amp=use_amp, | |
**kwargs) | |
device = dist_util.dev() | |
self.cano_cvD = vision_aided_loss.Discriminator( | |
cv_type='clip', loss_type='multilevel_sigmoid_s', | |
device=device).to(device) | |
self.cano_cvD.cv_ensemble.requires_grad_( | |
False) # Freeze feature extractor | |
# self.cano_cvD.train() | |
cvD_model_params = list(self.cano_cvD.parameters()) | |
SR_TRAINING = False | |
if SR_TRAINING: # replace the conv1 with 6 channel input | |
# width, patch_size = self.nvs_cvD.cv_ensemble | |
vision_width, vision_patch_size = [ | |
self.cano_cvD.cv_ensemble.models[0].model.conv1.weight.shape[k] | |
for k in [0, -1] | |
] | |
self.cano_cvD.cv_ensemble.models[0].model.conv1 = th.nn.Conv2d( | |
in_channels=6, | |
out_channels=vision_width, | |
kernel_size=vision_patch_size, | |
stride=vision_patch_size, | |
bias=False).to(dist_util.dev()) | |
cvD_model_params += list( | |
self.cano_cvD.cv_ensemble.models[0].model.conv1.parameters()) | |
self.cano_cvD.cv_ensemble.models[ | |
0].image_mean = self.cano_cvD.cv_ensemble.models[ | |
0].image_mean.repeat(2) | |
self.cano_cvD.cv_ensemble.models[ | |
0].image_std = self.cano_cvD.cv_ensemble.models[ | |
0].image_std.repeat(2) | |
# logger.log(f'cano_cvD_model_params: {cvD_model_params}') | |
self._load_and_sync_parameters(model=self.cano_cvD, | |
model_name='cano_cvD') | |
self.mp_trainer_canonical_cvD = MixedPrecisionTrainer( | |
model=self.cano_cvD, | |
use_fp16=self.use_fp16, | |
fp16_scale_growth=fp16_scale_growth, | |
model_name='canonical_cvD', | |
use_amp=use_amp, | |
model_params=cvD_model_params) | |
# cano_lr = 2e-5 * (lr / 1e-5) # D_lr=2e-4 in cvD by default | |
# cano_lr = 5e-5 * (lr / 1e-5) # D_lr=2e-4 in cvD by default | |
cano_lr = 2e-4 * ( | |
lr / 1e-5) # D_lr=2e-4 in cvD by default. 1e-4 still overfitting | |
self.opt_cano_cvD = AdamW( | |
self.mp_trainer_canonical_cvD.master_params, | |
lr=cano_lr, # same as the G | |
betas=(0, 0.999), | |
eps=1e-8) # dlr in biggan cfg | |
logger.log(f'cpt_cano_cvD lr: {cano_lr}') | |
if self.use_ddp: | |
self.ddp_cano_cvD = DDP( | |
self.cano_cvD, | |
device_ids=[dist_util.dev()], | |
output_device=dist_util.dev(), | |
broadcast_buffers=False, | |
bucket_cap_mb=128, | |
find_unused_parameters=False, | |
) | |
else: | |
self.ddp_cano_cvD = self.cano_cvD | |
th.cuda.empty_cache() | |
def run_step(self, batch, step='g_step'): | |
# self.forward_backward(batch) | |
if step == 'g_step_rec': | |
self.forward_G_rec(batch) | |
took_step_g_rec = self.mp_trainer_rec.optimize(self.opt) | |
if took_step_g_rec: | |
self._update_ema() # g_ema | |
elif step == 'd_step_rec': | |
self.forward_D(batch, behaviour='rec') | |
# _ = self.mp_trainer_cvD.optimize(self.opt_cvD) | |
_ = self.mp_trainer_canonical_cvD.optimize(self.opt_cano_cvD) | |
elif step == 'g_step_nvs': | |
self.forward_G_nvs(batch) | |
took_step_g_nvs = self.mp_trainer_rec.optimize(self.opt) | |
if took_step_g_nvs: | |
self._update_ema() # g_ema | |
elif step == 'd_step_nvs': | |
self.forward_D(batch, behaviour='nvs') | |
_ = self.mp_trainer_cvD.optimize(self.opt_cvD) | |
# _ = self.mp_trainer_canonical_cvD.optimize(self.opt_cano_cvD) | |
self._anneal_lr() | |
self.log_step() | |
def run_loop(self): | |
while (not self.lr_anneal_steps | |
or self.step + self.resume_step < self.lr_anneal_steps): | |
# let all processes sync up before starting with a new epoch of training | |
dist_util.synchronize() | |
# batch, cond = next(self.data) | |
# if batch is None: | |
batch = next(self.data) | |
if self.novel_view_poses is None: | |
self.novel_view_poses = th.roll(batch['c'], 1, 0).to( | |
dist_util.dev()) # save for eval visualization use | |
self.run_step(batch, 'g_step_rec') | |
# if self.step % 2 == 0: | |
batch = next(self.data) | |
self.run_step(batch, 'd_step_rec') | |
# if self.step % 2 == 1: | |
batch = next(self.data) | |
self.run_step(batch, 'g_step_nvs') | |
batch = next(self.data) | |
self.run_step(batch, 'd_step_nvs') | |
if self.step % self.log_interval == 0 and dist_util.get_rank( | |
) == 0: | |
out = logger.dumpkvs() | |
# * log to tensorboard | |
for k, v in out.items(): | |
self.writer.add_scalar(f'Loss/{k}', v, | |
self.step + self.resume_step) | |
# if self.step % self.eval_interval == 0 and self.step != 0: | |
if self.step % self.eval_interval == 0: | |
if dist_util.get_rank() == 0: | |
self.eval_loop() | |
# self.eval_novelview_loop() | |
# let all processes sync up before starting with a new epoch of training | |
th.cuda.empty_cache() | |
dist_util.synchronize() | |
if self.step % self.save_interval == 0: | |
self.save() | |
self.save(self.mp_trainer_cvD, self.mp_trainer_cvD.model_name) | |
self.save(self.mp_trainer_canonical_cvD, | |
self.mp_trainer_canonical_cvD.model_name) | |
dist_util.synchronize() | |
# Run for a finite amount of time in integration tests. | |
if os.environ.get("DIFFUSION_TRAINING_TEST", | |
"") and self.step > 0: | |
return | |
self.step += 1 | |
if self.step > self.iterations: | |
print('reached maximum iterations, exiting') | |
# Save the last checkpoint if it wasn't already saved. | |
if (self.step - 1) % self.save_interval != 0: | |
self.save() | |
self.save(self.mp_trainer_cvD, | |
self.mp_trainer_cvD.model_name) | |
self.save(self.mp_trainer_canonical_cvD, | |
self.mp_trainer_canonical_cvD.model_name) | |
exit() | |
# Save the last checkpoint if it wasn't already saved. | |
if (self.step - 1) % self.save_interval != 0: | |
self.save() | |
self.save(self.mp_trainer_canonical_cvD, 'cvD') | |
def forward_D(self, batch, behaviour): # update D | |
self.mp_trainer_canonical_cvD.zero_grad() | |
self.mp_trainer_cvD.zero_grad() | |
self.rec_model.requires_grad_(False) | |
# self.ddp_model.requires_grad_(False) | |
# update two D | |
if behaviour == 'nvs': | |
self.ddp_nvs_cvD.requires_grad_(True) | |
self.ddp_cano_cvD.requires_grad_(False) | |
else: # update rec canonical D | |
self.ddp_nvs_cvD.requires_grad_(False) | |
self.ddp_cano_cvD.requires_grad_(True) | |
batch_size = batch['img'].shape[0] | |
# * sample a new batch for D training | |
for i in range(0, batch_size, self.microbatch): | |
micro = { | |
k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous() | |
for k, v in batch.items() | |
} | |
with th.autocast(device_type='cuda', | |
dtype=th.float16, | |
enabled=self.mp_trainer_canonical_cvD.use_amp): | |
novel_view_c = th.cat([micro['c'][1:], micro['c'][:1]]) | |
latent = self.rec_model(img=micro['img_to_encoder'], | |
behaviour='enc_dec_wo_triplane') | |
cano_pred = self.rec_model(latent=latent, | |
c=micro['c'], | |
behaviour='triplane_dec') | |
# TODO, optimize with one encoder, and two triplane decoder | |
if behaviour == 'rec': | |
if 'image_sr' in cano_pred: | |
# d_loss_cano = self.run_D_Diter( | |
# # real=micro['img_sr'], | |
# # fake=cano_pred['image_sr'], | |
# real=0.5 * micro['img_sr'] + 0.5 * th.nn.functional.interpolate(micro['img'], size=micro['img_sr'].shape[2:], mode='bilinear'), | |
# fake=0.5 * cano_pred['image_sr'] + 0.5 * th.nn.functional.interpolate(cano_pred['image_raw'], size=cano_pred['image_sr'].shape[2:], mode='bilinear'), | |
# D=self.ddp_canonical_cvD) # ! failed, color bias | |
# try concat them in batch | |
d_loss_cano = self.run_D_Diter( | |
real=th.cat([ | |
th.nn.functional.interpolate( | |
micro['img'], | |
size=micro['img_sr'].shape[2:], | |
mode='bilinear', | |
align_corners=False, | |
antialias=True), | |
micro['img_sr'], | |
], | |
dim=1), | |
fake=th.cat([ | |
th.nn.functional.interpolate( | |
cano_pred['image_raw'], | |
size=cano_pred['image_sr'].shape[2:], | |
mode='bilinear', | |
align_corners=False, | |
antialias=True), | |
cano_pred['image_sr'], | |
], | |
dim=1), | |
D=self.ddp_cano_cvD) # TODO, add SR for FFHQ | |
else: | |
d_loss_cano = self.run_D_Diter( | |
real=micro['img'], | |
fake=cano_pred['image_raw'], | |
D=self.ddp_cano_cvD) # TODO, add SR for FFHQ | |
log_rec3d_loss_dict( | |
{'vision_aided_loss/D_cano': d_loss_cano}) | |
self.mp_trainer_canonical_cvD.backward(d_loss_cano) | |
else: | |
assert behaviour == 'nvs' | |
nvs_pred = self.rec_model(latent=latent, | |
c=novel_view_c, | |
behaviour='triplane_dec') | |
if 'image_sr' in nvs_pred: | |
# d_loss_nvs = self.run_D_Diter( | |
# # real=cano_pred['image_sr'], | |
# # fake=nvs_pred['image_sr'], | |
# real=0.5 * cano_pred['image_sr'] + 0.5 * th.nn.functional.interpolate(cano_pred['image_raw'], size=cano_pred['image_sr'].shape[2:], mode='bilinear'), | |
# fake=0.5 * nvs_pred['image_sr'] + 0.5 * th.nn.functional.interpolate(nvs_pred['image_raw'], size=nvs_pred['image_sr'].shape[2:], mode='bilinear'), | |
# D=self.ddp_nvs_cvD) # TODO, add SR for FFHQ | |
d_loss_nvs = self.run_D_Diter( | |
real=th.cat([ | |
th.nn.functional.interpolate( | |
cano_pred['image_raw'], | |
size=cano_pred['image_sr'].shape[2:], | |
mode='bilinear', | |
align_corners=False, | |
antialias=True), | |
cano_pred['image_sr'], | |
], | |
dim=1), | |
fake=th.cat([ | |
th.nn.functional.interpolate( | |
nvs_pred['image_raw'], | |
size=nvs_pred['image_sr'].shape[2:], | |
mode='bilinear', | |
align_corners=False, | |
antialias=True), | |
nvs_pred['image_sr'], | |
], | |
dim=1), | |
D=self.ddp_nvs_cvD) # TODO, add SR for FFHQ | |
else: | |
d_loss_nvs = self.run_D_Diter( | |
real=cano_pred['silhouette_normalized_3channel'], | |
fake=nvs_pred['silhouette_normalized_3channel'], | |
D=self.ddp_nvs_cvD) # TODO, add SR for FFHQ | |
log_rec3d_loss_dict( | |
{'vision_aided_loss/D_nvs_silhouette': d_loss_nvs}) | |
self.mp_trainer_cvD.backward(d_loss_nvs) | |
def forward_G_rec(self, batch): # update G | |
self.mp_trainer_rec.zero_grad() | |
self.rec_model.requires_grad_(True) | |
self.ddp_cano_cvD.requires_grad_(False) | |
self.ddp_nvs_cvD.requires_grad_(False) | |
batch_size = batch['img'].shape[0] | |
for i in range(0, batch_size, self.microbatch): | |
micro = { | |
k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous() | |
for k, v in batch.items() | |
} | |
last_batch = (i + self.microbatch) >= batch_size | |
with th.autocast(device_type='cuda', | |
dtype=th.float16, | |
enabled=self.mp_trainer_rec.use_amp): | |
pred = self.rec_model( | |
img=micro['img_to_encoder'], c=micro['c'] | |
) # render novel view for first half of the batch for D loss | |
target_for_rec = micro | |
cano_pred = pred | |
if last_batch or not self.use_ddp: | |
loss, loss_dict = self.loss_class(cano_pred, | |
target_for_rec, | |
test_mode=False, | |
step=self.step + | |
self.resume_step) | |
else: | |
with self.rec_model.no_sync(): # type: ignore | |
loss, loss_dict = self.loss_class(cano_pred, | |
target_for_rec, | |
test_mode=False, | |
step=self.step + | |
self.resume_step) | |
# add cvD supervision | |
# ! TODO | |
if 'image_sr' in cano_pred: | |
# concat both resolution | |
vision_aided_loss = self.ddp_cano_cvD( | |
th.cat([ | |
th.nn.functional.interpolate( | |
cano_pred['image_raw'], | |
size=cano_pred['image_sr'].shape[2:], | |
mode='bilinear', | |
align_corners=False, | |
antialias=True), | |
cano_pred['image_sr'], | |
], | |
dim=1), # 6 channel input | |
for_G=True).mean() # [B, 1] shape | |
else: | |
vision_aided_loss = self.ddp_cano_cvD( | |
cano_pred['image_raw'], | |
for_G=True).mean() # [B, 1] shape | |
# last_layer = self.rec_model.module.decoder.triplane_decoder.decoder.net[ # type: ignore | |
# -1].weight # type: ignore | |
d_weight = th.tensor(self.loss_class.opt.rec_cvD_lambda).to( | |
dist_util.dev()) | |
# d_weight = calculate_adaptive_weight( | |
# loss, | |
# vision_aided_loss, | |
# last_layer, | |
# disc_weight_max=0.1) * self.loss_class.opt.rec_cvD_lambda | |
loss += vision_aided_loss * d_weight | |
loss_dict.update({ | |
'vision_aided_loss/G_rec': | |
(vision_aided_loss * d_weight).detach(), | |
'd_weight': | |
d_weight | |
}) | |
log_rec3d_loss_dict(loss_dict) | |
self.mp_trainer_rec.backward( | |
loss) # no nvs cvD loss, following VQ3D | |
# DDP some parameters no grad: | |
# for name, p in self.ddp_model.named_parameters(): | |
# if p.grad is None: | |
# print(f"(in rec)found rec unused param: {name}") | |
# ! move to other places, add tensorboard | |
# if dist_util.get_rank() == 0 and self.step % 500 == 0: | |
# with th.no_grad(): | |
# # gt_vis = th.cat([batch['img'], batch['depth']], dim=-1) | |
# gt_depth = micro['depth'] | |
# if gt_depth.ndim == 3: | |
# gt_depth = gt_depth.unsqueeze(1) | |
# gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() - | |
# gt_depth.min()) | |
# # if True: | |
# pred_depth = pred['image_depth'] | |
# pred_depth = (pred_depth - pred_depth.min()) / ( | |
# pred_depth.max() - pred_depth.min()) | |
# pred_img = pred['image_raw'] | |
# gt_img = micro['img'] | |
# if 'image_sr' in pred: | |
# if pred['image_sr'].shape[-1] == 512: | |
# pred_img = th.cat( | |
# [self.pool_512(pred_img), pred['image_sr']], | |
# dim=-1) | |
# gt_img = th.cat( | |
# [self.pool_512(micro['img']), micro['img_sr']], | |
# dim=-1) | |
# pred_depth = self.pool_512(pred_depth) | |
# gt_depth = self.pool_512(gt_depth) | |
# elif pred['image_sr'].shape[-1] == 256: | |
# pred_img = th.cat( | |
# [self.pool_256(pred_img), pred['image_sr']], | |
# dim=-1) | |
# gt_img = th.cat( | |
# [self.pool_256(micro['img']), micro['img_sr']], | |
# dim=-1) | |
# pred_depth = self.pool_256(pred_depth) | |
# gt_depth = self.pool_256(gt_depth) | |
# else: | |
# pred_img = th.cat( | |
# [self.pool_128(pred_img), pred['image_sr']], | |
# dim=-1) | |
# gt_img = th.cat( | |
# [self.pool_128(micro['img']), micro['img_sr']], | |
# dim=-1) | |
# gt_depth = self.pool_128(gt_depth) | |
# pred_depth = self.pool_128(pred_depth) | |
# else: | |
# gt_img = self.pool_64(gt_img) | |
# gt_depth = self.pool_64(gt_depth) | |
# gt_vis = th.cat( | |
# [gt_img, gt_depth.repeat_interleave(3, dim=1)], | |
# dim=-1) # TODO, fail to load depth. range [0, 1] | |
# pred_vis = th.cat( | |
# [pred_img, | |
# pred_depth.repeat_interleave(3, dim=1)], | |
# dim=-1) # B, 3, H, W | |
# vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute( | |
# 1, 2, 0).cpu() # ! pred in range[-1, 1] | |
# # vis_grid = torchvision.utils.make_grid(vis) # HWC | |
# vis = vis.numpy() * 127.5 + 127.5 | |
# vis = vis.clip(0, 255).astype(np.uint8) | |
# Image.fromarray(vis).save( | |
# f'{logger.get_dir()}/{self.step+self.resume_step}_rec.jpg' | |
# ) | |
# print( | |
# 'log vis to: ', | |
# f'{logger.get_dir()}/{self.step+self.resume_step}_rec.jpg' | |
# ) | |
if dist_util.get_rank() == 0 and self.step % 500 == 0: | |
with th.no_grad(): | |
# gt_vis = th.cat([batch['img'], batch['depth']], dim=-1) | |
def norm_depth(pred_depth): | |
# pred_depth = pred['image_depth'] | |
pred_depth = (pred_depth - pred_depth.min()) / ( | |
pred_depth.max() - pred_depth.min()) | |
return pred_depth | |
pred_img = pred['image_raw'] | |
gt_img = micro['img'] | |
# infer novel view also | |
pred_nv_img = self.rec_model( | |
img=micro['img_to_encoder'], | |
c=self.novel_view_poses) # pred: (B, 3, 64, 64) | |
# if 'depth' in micro: | |
gt_depth = micro['depth'] | |
if gt_depth.ndim == 3: | |
gt_depth = gt_depth.unsqueeze(1) | |
gt_depth = norm_depth(gt_depth) | |
# gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() - | |
# gt_depth.min()) | |
# if True: | |
if 'image_depth' in pred: | |
# pred_depth = pred['image_depth'] | |
# pred_depth = (pred_depth - pred_depth.min()) / ( | |
# pred_depth.max() - pred_depth.min()) | |
pred_depth = norm_depth(pred['image_depth']) | |
pred_nv_depth = norm_depth( | |
pred_nv_img['image_depth']) | |
else: | |
pred_depth = th.zeros_like(gt_depth) | |
pred_nv_depth = th.zeros_like(gt_depth) | |
if 'image_sr' in pred: | |
if pred['image_sr'].shape[-1] == 512: | |
pred_img = th.cat( | |
[self.pool_512(pred_img), pred['image_sr']], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_512(micro['img']), micro['img_sr']], | |
dim=-1) | |
pred_depth = self.pool_512(pred_depth) | |
gt_depth = self.pool_512(gt_depth) | |
elif pred['image_sr'].shape[-1] == 256: | |
pred_img = th.cat( | |
[self.pool_256(pred_img), pred['image_sr']], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_256(micro['img']), micro['img_sr']], | |
dim=-1) | |
pred_depth = self.pool_256(pred_depth) | |
gt_depth = self.pool_256(gt_depth) | |
else: | |
pred_img = th.cat( | |
[self.pool_128(pred_img), pred['image_sr']], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_128(micro['img']), micro['img_sr']], | |
dim=-1) | |
gt_depth = self.pool_128(gt_depth) | |
pred_depth = self.pool_128(pred_depth) | |
else: | |
gt_img = self.pool_64(gt_img) | |
gt_depth = self.pool_64(gt_depth) | |
pred_vis = th.cat( | |
[pred_img, | |
pred_depth.repeat_interleave(3, dim=1)], | |
dim=-1) # B, 3, H, W | |
pred_vis_nv = th.cat([ | |
pred_nv_img['image_raw'], | |
pred_nv_depth.repeat_interleave(3, dim=1) | |
], | |
dim=-1) # B, 3, H, W | |
pred_vis = th.cat([pred_vis, pred_vis_nv], | |
dim=-2) # cat in H dim | |
gt_vis = th.cat( | |
[gt_img, gt_depth.repeat_interleave(3, dim=1)], | |
dim=-1) # TODO, fail to load depth. range [0, 1] | |
# vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute( | |
vis = th.cat([gt_vis, pred_vis], dim=-2) | |
# .permute( | |
# 0, 2, 3, 1).cpu() | |
vis_tensor = torchvision.utils.make_grid( | |
vis, nrow=vis.shape[-1] // 64) # HWC | |
torchvision.utils.save_image( | |
vis_tensor, | |
f'{logger.get_dir()}/{self.step+self.resume_step}.jpg') | |
# vis = vis.numpy() * 127.5 + 127.5 | |
# vis = vis.clip(0, 255).astype(np.uint8) | |
# Image.fromarray(vis).save( | |
# f'{logger.get_dir()}/{self.step+self.resume_step}.jpg') | |
logger.log( | |
'log vis to: ', | |
f'{logger.get_dir()}/{self.step+self.resume_step}.jpg') | |
def forward_G_nvs(self, batch): # update G | |
self.mp_trainer_rec.zero_grad() | |
self.rec_model.requires_grad_(True) | |
self.ddp_cano_cvD.requires_grad_(False) | |
self.ddp_nvs_cvD.requires_grad_(False) # only use novel view D | |
batch_size = batch['img'].shape[0] | |
for i in range(0, batch_size, self.microbatch): | |
micro = { | |
k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous() | |
for k, v in batch.items() | |
} | |
with th.autocast(device_type='cuda', | |
dtype=th.float16, | |
enabled=self.mp_trainer_rec.use_amp): | |
nvs_pred = self.rec_model( | |
img=micro['img_to_encoder'], | |
c=th.cat([ | |
micro['c'][1:], | |
micro['c'][:1], | |
])) # ! render novel views only for D loss | |
# add cvD supervision | |
if 'image_sr' in nvs_pred: | |
# concat sr and raw results | |
vision_aided_loss = self.ddp_nvs_cvD( | |
# pred_nv['image_sr'], | |
# 0.5 * pred_nv['image_sr'] + 0.5 * th.nn.functional.interpolate(pred_nv['image_raw'], size=pred_nv['image_sr'].shape[2:], mode='bilinear'), | |
th.cat([ | |
th.nn.functional.interpolate( | |
nvs_pred['image_raw'], | |
size=nvs_pred['image_sr'].shape[2:], | |
mode='bilinear', | |
align_corners=False, | |
antialias=True), | |
nvs_pred['image_sr'], | |
], | |
dim=1), | |
for_G=True).mean() # ! for debugging | |
# supervise sr only | |
# vision_aided_loss = self.ddp_nvs_cvD( | |
# # pred_nv['image_sr'], | |
# # 0.5 * pred_nv['image_sr'] + 0.5 * th.nn.functional.interpolate(pred_nv['image_raw'], size=pred_nv['image_sr'].shape[2:], mode='bilinear'), | |
# th.cat([nvs_pred['image_sr'], | |
# th.nn.functional.interpolate(nvs_pred['image_raw'], size=nvs_pred['image_sr'].shape[2:], mode='bilinear', | |
# align_corners=False, | |
# antialias=True),]), | |
# for_G=True).mean() # ! for debugging | |
# pred_nv['image_raw'], for_G=True).mean() # [B, 1] shape | |
else: | |
# vision_aided_loss = self.ddp_nvs_cvD( | |
# nvs_pred['image_raw'], | |
# for_G=True).mean() # [B, 1] shape | |
vision_aided_loss = self.ddp_nvs_cvD( | |
nvs_pred['silhouette_normalized_3channel'], | |
for_G=True).mean() # [B, 1] shape | |
loss = vision_aided_loss * self.loss_class.opt.nvs_cvD_lambda | |
log_rec3d_loss_dict({ | |
'vision_aided_loss/G_nvs_silhouette': loss | |
# vision_aided_loss * self.loss_class.opt.nvs_cvD_lambda, | |
}) | |
self.mp_trainer_rec.backward(loss) | |
# ! move to other places, add tensorboard | |
# if dist_util.get_rank() == 0 and self.step % 500 == 0: | |
if dist_util.get_rank() == 0 and self.step % 500 == 1: | |
with th.no_grad(): | |
# gt_vis = th.cat([batch['img'], batch['depth']], dim=-1) | |
gt_depth = micro['depth'] | |
if gt_depth.ndim == 3: | |
gt_depth = gt_depth.unsqueeze(1) | |
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() - | |
gt_depth.min()) | |
# if True: | |
pred_depth = nvs_pred['image_depth'] | |
pred_depth = (pred_depth - pred_depth.min()) / ( | |
pred_depth.max() - pred_depth.min()) | |
pred_img = nvs_pred['image_raw'] | |
gt_img = micro['img'] | |
if 'image_sr' in nvs_pred: | |
if nvs_pred['image_sr'].shape[-1] == 512: | |
pred_img = th.cat([ | |
self.pool_512(pred_img), nvs_pred['image_sr'] | |
], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_512(micro['img']), micro['img_sr']], | |
dim=-1) | |
pred_depth = self.pool_512(pred_depth) | |
gt_depth = self.pool_512(gt_depth) | |
elif nvs_pred['image_sr'].shape[-1] == 256: | |
pred_img = th.cat([ | |
self.pool_256(pred_img), nvs_pred['image_sr'] | |
], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_256(micro['img']), micro['img_sr']], | |
dim=-1) | |
pred_depth = self.pool_256(pred_depth) | |
gt_depth = self.pool_256(gt_depth) | |
else: | |
pred_img = th.cat([ | |
self.pool_128(pred_img), nvs_pred['image_sr'] | |
], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_128(micro['img']), micro['img_sr']], | |
dim=-1) | |
gt_depth = self.pool_128(gt_depth) | |
pred_depth = self.pool_128(pred_depth) | |
else: | |
gt_img = self.pool_64(gt_img) | |
gt_depth = self.pool_64(gt_depth) | |
gt_vis = th.cat( | |
[gt_img, gt_depth.repeat_interleave(3, dim=1)], | |
dim=-1) # TODO, fail to load depth. range [0, 1] | |
pred_vis = th.cat( | |
[pred_img, | |
pred_depth.repeat_interleave(3, dim=1)], | |
dim=-1) # B, 3, H, W | |
# vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute( | |
# 1, 2, 0).cpu() # ! pred in range[-1, 1] | |
vis = th.cat([gt_vis, pred_vis], dim=-2) | |
vis = torchvision.utils.make_grid( | |
vis, | |
normalize=True, | |
scale_each=True, | |
value_range=(-1, 1)).cpu().permute(1, 2, 0) # H W 3 | |
vis = vis.numpy() * 255 | |
vis = vis.clip(0, 255).astype(np.uint8) | |
# print(vis.shape) | |
Image.fromarray(vis).save( | |
f'{logger.get_dir()}/{self.step+self.resume_step}_nvs.jpg' | |
) | |
print( | |
'log vis to: ', | |
f'{logger.get_dir()}/{self.step+self.resume_step}_nvs.jpg' | |
) | |