GaussianAnything-AIGC3D / scripts /vit_triplane_sit_sample.py
yslan's picture
init
7f51798
raw
history blame
13 kB
"""
Train a diffusion model on images.
"""
import json
import sys
import os
sys.path.append('.')
# from dnnlib import EasyDict
import traceback
import torch as th
# from xformers.triton import FusedLayerNorm as LayerNorm
import torch.multiprocessing as mp
import torch.distributed as dist
import numpy as np
import argparse
import dnnlib
from guided_diffusion import dist_util, logger
from guided_diffusion.resample import create_named_schedule_sampler
from guided_diffusion.script_util import (
args_to_dict,
add_dict_to_argparser,
continuous_diffusion_defaults,
control_net_defaults,
model_and_diffusion_defaults,
create_model_and_diffusion,
)
from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion
import nsr
import nsr.lsgm
# from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop
from datasets.eg3d_dataset import LMDBDataset_MV_Compressed_eg3d
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default, dataset_defaults
from datasets.shapenet import load_data, load_eval_data, load_memory_data
from nsr.losses.builder import E3DGELossClass
from torch_utils import legacy, misc
from torch.utils.data import Subset
from pdb import set_trace as st
from dnnlib.util import EasyDict, InfiniteSampler
# from .vit_triplane_train_FFHQ import init_dataset_kwargs
from datasets.eg3d_dataset import init_dataset_kwargs
th.backends.cudnn.enabled = True # https://zhuanlan.zhihu.com/p/635824460
th.backends.cudnn.benchmark = True
from transport import create_transport, Sampler
from transport.train_utils import parse_transport_args
from nsr.camera_utils import generate_input_camera, uni_mesh_path, sample_uniform_cameras_on_sphere
# from torch.utils.tensorboard import SummaryWriter
SEED = 0
def training_loop(args):
# def training_loop(args):
logger.log("dist setup...")
# th.multiprocessing.set_start_method('spawn')
th.autograd.set_detect_anomaly(False) # type: ignore
# th.autograd.set_detect_anomaly(True) # type: ignore
# st()
th.cuda.set_device(
args.local_rank) # set this line to avoid extra memory on rank 0
th.cuda.empty_cache()
th.cuda.manual_seed_all(SEED)
np.random.seed(SEED)
dist_util.setup_dist(args)
# st() # mark
th.backends.cuda.matmul.allow_tf32 = args.allow_tf32
th.backends.cudnn.allow_tf32 = args.allow_tf32
# st()
# logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"])
logger.configure(dir=args.logdir)
logger.log("creating ViT encoder and NSR decoder...")
# st() # mark
device = dist_util.dev()
args.img_size = [args.image_size_encoder]
logger.log("creating model and diffusion...")
# * set denoise model args
if args.denoise_in_channels == -1:
args.diffusion_input_size = args.image_size_encoder
args.denoise_in_channels = args.out_chans
args.denoise_out_channels = args.out_chans
else:
assert args.denoise_out_channels != -1
# args.image_size = args.image_size_encoder # 224, follow the triplane size
# if args.diffusion_input_size == -1:
# else:
# args.image_size = args.diffusion_input_size
if args.pred_type == 'v': # for lsgm training
assert args.predict_v == True # for DDIM sampling
# if not args.create_dit:
denoise_model, diffusion = create_model_and_diffusion(
**args_to_dict(args,
model_and_diffusion_defaults().keys()))
opts = eg3d_options_default()
if args.sr_training:
args.sr_kwargs = dnnlib.EasyDict(
channel_base=opts.cbase,
channel_max=opts.cmax,
fused_modconv_default='inference_only',
use_noise=True
) # ! close noise injection? since noise_mode='none' in eg3d
logger.log("creating encoder and NSR decoder...")
auto_encoder = create_3DAE_model(
**args_to_dict(args,
encoder_and_nsr_defaults().keys()))
auto_encoder.to(device)
auto_encoder.eval()
logger.log("creating data loader...")
if args.objv_dataset:
from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data, load_data_cls
else: # shapenet
from datasets.shapenet import load_data, load_eval_data, load_memory_data
if args.i23d:
data = load_eval_data(
file_path=args.eval_data_dir,
batch_size=args.eval_batch_size,
reso=args.image_size,
reso_encoder=args.image_size_encoder, # 224 -> 128
num_workers=args.num_workers,
load_depth=True, # for evaluation
preprocess=auto_encoder.preprocess,
**args_to_dict(args,
dataset_defaults().keys()))
else:
data = None # t23d sampling, only caption required
# eval_dataset = load_data_cls(
# file_path=args.data_dir,
# batch_size=args.batch_size,
# reso=args.image_size,
# reso_encoder=args.image_size_encoder, # 224 -> 128
# num_workers=args.num_workers,
# load_latent=True,
# return_dataset=True,
# **args_to_dict(args,
# dataset_defaults().keys())
# )
eval_dataset = None
# let all processes sync up before starting with a new epoch of training
if dist_util.get_rank() == 0:
with open(os.path.join(args.logdir, 'args.json'), 'w') as f:
json.dump(vars(args), f, indent=2)
args.schedule_sampler = create_named_schedule_sampler(
args.schedule_sampler, diffusion)
opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys()))
loss_class = E3DGELossClass(device, opt).to(device)
logger.log("training...")
TrainLoop = {
'flow_matching':
nsr.lsgm.flow_matching_trainer.FlowMatchingEngine,
'flow_matching_gs':
nsr.lsgm.flow_matching_trainer.FlowMatchingEngine_gs, # slightly modified sampling and rendering for gs
}[args.trainer_name]
# if 'vpsde' in args.trainer_name:
# sde_diffusion = make_sde_diffusion(
# dnnlib.EasyDict(
# args_to_dict(args,
# continuous_diffusion_defaults().keys())))
# # assert args.mixed_prediction, 'enable mixed_prediction by default'
# logger.log('create VPSDE diffusion.')
# else:
sde_diffusion = None
# if 'cldm' in args.trainer_name:
# assert isinstance(denoise_model, tuple)
# denoise_model, controlNet = denoise_model
# controlNet.to(dist_util.dev())
# controlNet.train()
# else:
controlNet = None
# st()
denoise_model.to(dist_util.dev())
denoise_model.train()
auto_encoder.decoder.rendering_kwargs = args.rendering_kwargs
# camera = th.load('eval_pose.pt', map_location=dist_util.dev())[:]
# if fid
# '''
azimuths = []
elevations = []
frame_number = 10
for i in range(frame_number): # 1030 * 5 * 10, for FID 50K
azi, elevation = sample_uniform_cameras_on_sphere()
# azi, elevation = azi[0] / np.pi * 180, elevation[0] / np.pi * 180
azi, elevation = azi[0] / np.pi * 180, (elevation[0]-np.pi*0.5) / np.pi * 180 # [-0.5 pi, 0.5 pi]
azimuths.append(azi)
elevations.append(elevation)
azimuths = np.array(azimuths)
elevations = np.array(elevations)
# azimuths = np.array(list(range(0,360,30))).astype(float)
# frame_number = azimuths.shape[0]
# elevations = np.array([10]*azimuths.shape[0]).astype(float)
zero123pp_pose, _ = generate_input_camera(1.8, [[elevations[i], azimuths[i]] for i in range(frame_number)], fov=30)
K = th.Tensor([1.3889, 0.0000, 0.5000, 0.0000, 1.3889, 0.5000, 0.0000, 0.0000, 0.0039]).to(zero123pp_pose) # keeps the same
camera = th.cat([zero123pp_pose.reshape(frame_number,-1), K.unsqueeze(0).repeat(frame_number,1)], dim=-1)
# '''
# camera = uni_mesh_path(12, radius=2.0) # ! for exporting mesh
training_loop_class=TrainLoop(rec_model=auto_encoder,
denoise_model=denoise_model,
control_model=controlNet,
diffusion=diffusion,
sde_diffusion=sde_diffusion,
loss_class=loss_class,
data=data,
# eval_data=None,
eval_data=eval_dataset, # return dataset
**vars(args))
if args.i23d:
# ! image-conditioned 3D generation
training_loop_class.eval_i23d_and_export(
prompt='',
save_img=args.save_img,
use_train_trajectory=args.use_train_trajectory,
camera=camera,
num_instances=args.num_instances,
num_samples=args.num_samples,
stage_1_output_dir=args.stage_1_output_dir,
export_mesh=args.export_mesh,
)
else:
# the script used in 3dtopia
with open('datasets/caption-forpaper.txt', 'r') as f:
all_prompts_available = [caption.strip() for caption in f.readlines()]
for prompt in all_prompts_available:
training_loop_class.eval_and_export(
prompt=prompt,
save_img=args.save_img,
use_train_trajectory=args.use_train_trajectory,
camera=camera,
num_instances=args.num_instances,
num_samples=args.num_samples,
stage_1_output_dir=args.stage_1_output_dir,
export_mesh=args.export_mesh,
)
dist_util.synchronize()
logger.log('sampling complete')
def create_argparser(**kwargs):
# defaults.update(model_and_diffusion_defaults())
defaults = dict(
dataset_size=-1,
diffusion_input_size=-1,
trainer_name='adm',
use_amp=False,
train_vae=True, # jldm?
triplane_scaling_divider=1.0, # divide by this value
overfitting=False,
num_workers=4,
image_size=128,
image_size_encoder=224,
iterations=150000,
schedule_sampler="uniform",
anneal_lr=False,
lr=5e-5,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=1,
eval_batch_size=12,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=50,
eval_interval=2500,
save_interval=10000,
resume_checkpoint="",
resume_checkpoint_EG3D="",
use_fp16=False,
fp16_scale_growth=1e-3,
data_dir="",
eval_data_dir="",
load_depth=True, # TODO
logdir="/mnt/lustre/yslan/logs/nips23/",
load_submodule_name='', # for loading pretrained auto_encoder model
ignore_resume_opt=False,
# freeze_ae=False,
denoised_ae=True,
diffusion_ce_anneal=False,
use_lmdb=False,
interval=1,
freeze_triplane_decoder=False,
objv_dataset=False,
use_eos_feature=False,
clip_grad_throld=1.0,
allow_tf32=True,
save_img=False,
use_train_trajectory=
False, # use train trajectory to sample images for fid calculation
unconditional_guidance_scale=1.0,
num_samples=10,
num_instances=10, # for i23d, loop different condition
)
defaults.update(model_and_diffusion_defaults())
defaults.update(continuous_diffusion_defaults())
defaults.update(encoder_and_nsr_defaults()) # type: ignore
defaults.update(dataset_defaults()) # type: ignore
defaults.update(loss_defaults())
defaults.update(control_net_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
# ! add transport args
parse_transport_args(parser)
return parser
if __name__ == "__main__":
# os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO"
# os.environ["NCCL_DEBUG"] = "INFO"
th.multiprocessing.set_start_method('spawn')
os.environ[
"TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging.
args = create_argparser().parse_args()
args.local_rank = int(os.environ["LOCAL_RANK"])
args.gpus = th.cuda.device_count()
# opts = dnnlib.EasyDict(vars(args)) # compatiable with triplane original settings
# opts = args
args.rendering_kwargs = rendering_options_defaults(args)
# Launch processes.
logger.log('Launching processes...')
logger.log('Available devices ', th.cuda.device_count())
logger.log('Current cuda device ', th.cuda.current_device())
# logger.log('GPU Device name:', th.cuda.get_device_name(th.cuda.current_device()))
try:
training_loop(args)
# except KeyboardInterrupt as e:
except Exception as e:
# print(e)
traceback.print_exc()
dist_util.cleanup() # clean port and socket when ctrl+c