Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Train a diffusion model on images. | |
""" | |
import json | |
import sys | |
import os | |
sys.path.append('.') | |
# from dnnlib import EasyDict | |
import traceback | |
import torch as th | |
# from xformers.triton import FusedLayerNorm as LayerNorm | |
import torch.multiprocessing as mp | |
import torch.distributed as dist | |
import numpy as np | |
import argparse | |
import dnnlib | |
from guided_diffusion import dist_util, logger | |
from guided_diffusion.resample import create_named_schedule_sampler | |
from guided_diffusion.script_util import ( | |
args_to_dict, | |
add_dict_to_argparser, | |
continuous_diffusion_defaults, | |
control_net_defaults, | |
model_and_diffusion_defaults, | |
create_model_and_diffusion, | |
) | |
from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion | |
import nsr | |
import nsr.lsgm | |
# from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop | |
from datasets.eg3d_dataset import LMDBDataset_MV_Compressed_eg3d | |
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default, dataset_defaults | |
from datasets.shapenet import load_data, load_eval_data, load_memory_data | |
from nsr.losses.builder import E3DGELossClass | |
from torch_utils import legacy, misc | |
from torch.utils.data import Subset | |
from pdb import set_trace as st | |
from dnnlib.util import EasyDict, InfiniteSampler | |
# from .vit_triplane_train_FFHQ import init_dataset_kwargs | |
from datasets.eg3d_dataset import init_dataset_kwargs | |
th.backends.cudnn.enabled = True # https://zhuanlan.zhihu.com/p/635824460 | |
th.backends.cudnn.benchmark = True | |
from transport import create_transport, Sampler | |
from transport.train_utils import parse_transport_args | |
from nsr.camera_utils import generate_input_camera, uni_mesh_path, sample_uniform_cameras_on_sphere | |
# from torch.utils.tensorboard import SummaryWriter | |
SEED = 0 | |
def training_loop(args): | |
# def training_loop(args): | |
logger.log("dist setup...") | |
# th.multiprocessing.set_start_method('spawn') | |
th.autograd.set_detect_anomaly(False) # type: ignore | |
# th.autograd.set_detect_anomaly(True) # type: ignore | |
# st() | |
th.cuda.set_device( | |
args.local_rank) # set this line to avoid extra memory on rank 0 | |
th.cuda.empty_cache() | |
th.cuda.manual_seed_all(SEED) | |
np.random.seed(SEED) | |
dist_util.setup_dist(args) | |
# st() # mark | |
th.backends.cuda.matmul.allow_tf32 = args.allow_tf32 | |
th.backends.cudnn.allow_tf32 = args.allow_tf32 | |
# st() | |
# logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) | |
logger.configure(dir=args.logdir) | |
logger.log("creating ViT encoder and NSR decoder...") | |
# st() # mark | |
device = dist_util.dev() | |
args.img_size = [args.image_size_encoder] | |
logger.log("creating model and diffusion...") | |
# * set denoise model args | |
if args.denoise_in_channels == -1: | |
args.diffusion_input_size = args.image_size_encoder | |
args.denoise_in_channels = args.out_chans | |
args.denoise_out_channels = args.out_chans | |
else: | |
assert args.denoise_out_channels != -1 | |
# args.image_size = args.image_size_encoder # 224, follow the triplane size | |
# if args.diffusion_input_size == -1: | |
# else: | |
# args.image_size = args.diffusion_input_size | |
if args.pred_type == 'v': # for lsgm training | |
assert args.predict_v == True # for DDIM sampling | |
# if not args.create_dit: | |
denoise_model, diffusion = create_model_and_diffusion( | |
**args_to_dict(args, | |
model_and_diffusion_defaults().keys())) | |
opts = eg3d_options_default() | |
if args.sr_training: | |
args.sr_kwargs = dnnlib.EasyDict( | |
channel_base=opts.cbase, | |
channel_max=opts.cmax, | |
fused_modconv_default='inference_only', | |
use_noise=True | |
) # ! close noise injection? since noise_mode='none' in eg3d | |
logger.log("creating encoder and NSR decoder...") | |
auto_encoder = create_3DAE_model( | |
**args_to_dict(args, | |
encoder_and_nsr_defaults().keys())) | |
auto_encoder.to(device) | |
auto_encoder.eval() | |
logger.log("creating data loader...") | |
if args.objv_dataset: | |
from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data, load_data_cls | |
else: # shapenet | |
from datasets.shapenet import load_data, load_eval_data, load_memory_data | |
if args.i23d: | |
data = load_eval_data( | |
file_path=args.eval_data_dir, | |
batch_size=args.eval_batch_size, | |
reso=args.image_size, | |
reso_encoder=args.image_size_encoder, # 224 -> 128 | |
num_workers=args.num_workers, | |
load_depth=True, # for evaluation | |
preprocess=auto_encoder.preprocess, | |
**args_to_dict(args, | |
dataset_defaults().keys())) | |
else: | |
data = None # t23d sampling, only caption required | |
# eval_dataset = load_data_cls( | |
# file_path=args.data_dir, | |
# batch_size=args.batch_size, | |
# reso=args.image_size, | |
# reso_encoder=args.image_size_encoder, # 224 -> 128 | |
# num_workers=args.num_workers, | |
# load_latent=True, | |
# return_dataset=True, | |
# **args_to_dict(args, | |
# dataset_defaults().keys()) | |
# ) | |
eval_dataset = None | |
# let all processes sync up before starting with a new epoch of training | |
if dist_util.get_rank() == 0: | |
with open(os.path.join(args.logdir, 'args.json'), 'w') as f: | |
json.dump(vars(args), f, indent=2) | |
args.schedule_sampler = create_named_schedule_sampler( | |
args.schedule_sampler, diffusion) | |
opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) | |
loss_class = E3DGELossClass(device, opt).to(device) | |
logger.log("training...") | |
TrainLoop = { | |
'flow_matching': | |
nsr.lsgm.flow_matching_trainer.FlowMatchingEngine, | |
'flow_matching_gs': | |
nsr.lsgm.flow_matching_trainer.FlowMatchingEngine_gs, # slightly modified sampling and rendering for gs | |
}[args.trainer_name] | |
# if 'vpsde' in args.trainer_name: | |
# sde_diffusion = make_sde_diffusion( | |
# dnnlib.EasyDict( | |
# args_to_dict(args, | |
# continuous_diffusion_defaults().keys()))) | |
# # assert args.mixed_prediction, 'enable mixed_prediction by default' | |
# logger.log('create VPSDE diffusion.') | |
# else: | |
sde_diffusion = None | |
# if 'cldm' in args.trainer_name: | |
# assert isinstance(denoise_model, tuple) | |
# denoise_model, controlNet = denoise_model | |
# controlNet.to(dist_util.dev()) | |
# controlNet.train() | |
# else: | |
controlNet = None | |
# st() | |
denoise_model.to(dist_util.dev()) | |
denoise_model.train() | |
auto_encoder.decoder.rendering_kwargs = args.rendering_kwargs | |
# camera = th.load('eval_pose.pt', map_location=dist_util.dev())[:] | |
# if fid | |
# ''' | |
azimuths = [] | |
elevations = [] | |
frame_number = 10 | |
for i in range(frame_number): # 1030 * 5 * 10, for FID 50K | |
azi, elevation = sample_uniform_cameras_on_sphere() | |
# azi, elevation = azi[0] / np.pi * 180, elevation[0] / np.pi * 180 | |
azi, elevation = azi[0] / np.pi * 180, (elevation[0]-np.pi*0.5) / np.pi * 180 # [-0.5 pi, 0.5 pi] | |
azimuths.append(azi) | |
elevations.append(elevation) | |
azimuths = np.array(azimuths) | |
elevations = np.array(elevations) | |
# azimuths = np.array(list(range(0,360,30))).astype(float) | |
# frame_number = azimuths.shape[0] | |
# elevations = np.array([10]*azimuths.shape[0]).astype(float) | |
zero123pp_pose, _ = generate_input_camera(1.8, [[elevations[i], azimuths[i]] for i in range(frame_number)], fov=30) | |
K = th.Tensor([1.3889, 0.0000, 0.5000, 0.0000, 1.3889, 0.5000, 0.0000, 0.0000, 0.0039]).to(zero123pp_pose) # keeps the same | |
camera = th.cat([zero123pp_pose.reshape(frame_number,-1), K.unsqueeze(0).repeat(frame_number,1)], dim=-1) | |
# ''' | |
# camera = uni_mesh_path(12, radius=2.0) # ! for exporting mesh | |
training_loop_class=TrainLoop(rec_model=auto_encoder, | |
denoise_model=denoise_model, | |
control_model=controlNet, | |
diffusion=diffusion, | |
sde_diffusion=sde_diffusion, | |
loss_class=loss_class, | |
data=data, | |
# eval_data=None, | |
eval_data=eval_dataset, # return dataset | |
**vars(args)) | |
if args.i23d: | |
# ! image-conditioned 3D generation | |
training_loop_class.eval_i23d_and_export( | |
prompt='', | |
save_img=args.save_img, | |
use_train_trajectory=args.use_train_trajectory, | |
camera=camera, | |
num_instances=args.num_instances, | |
num_samples=args.num_samples, | |
stage_1_output_dir=args.stage_1_output_dir, | |
export_mesh=args.export_mesh, | |
) | |
else: | |
# the script used in 3dtopia | |
with open('datasets/caption-forpaper.txt', 'r') as f: | |
all_prompts_available = [caption.strip() for caption in f.readlines()] | |
for prompt in all_prompts_available: | |
training_loop_class.eval_and_export( | |
prompt=prompt, | |
save_img=args.save_img, | |
use_train_trajectory=args.use_train_trajectory, | |
camera=camera, | |
num_instances=args.num_instances, | |
num_samples=args.num_samples, | |
stage_1_output_dir=args.stage_1_output_dir, | |
export_mesh=args.export_mesh, | |
) | |
dist_util.synchronize() | |
logger.log('sampling complete') | |
def create_argparser(**kwargs): | |
# defaults.update(model_and_diffusion_defaults()) | |
defaults = dict( | |
dataset_size=-1, | |
diffusion_input_size=-1, | |
trainer_name='adm', | |
use_amp=False, | |
train_vae=True, # jldm? | |
triplane_scaling_divider=1.0, # divide by this value | |
overfitting=False, | |
num_workers=4, | |
image_size=128, | |
image_size_encoder=224, | |
iterations=150000, | |
schedule_sampler="uniform", | |
anneal_lr=False, | |
lr=5e-5, | |
weight_decay=0.0, | |
lr_anneal_steps=0, | |
batch_size=1, | |
eval_batch_size=12, | |
microbatch=-1, # -1 disables microbatches | |
ema_rate="0.9999", # comma-separated list of EMA values | |
log_interval=50, | |
eval_interval=2500, | |
save_interval=10000, | |
resume_checkpoint="", | |
resume_checkpoint_EG3D="", | |
use_fp16=False, | |
fp16_scale_growth=1e-3, | |
data_dir="", | |
eval_data_dir="", | |
load_depth=True, # TODO | |
logdir="/mnt/lustre/yslan/logs/nips23/", | |
load_submodule_name='', # for loading pretrained auto_encoder model | |
ignore_resume_opt=False, | |
# freeze_ae=False, | |
denoised_ae=True, | |
diffusion_ce_anneal=False, | |
use_lmdb=False, | |
interval=1, | |
freeze_triplane_decoder=False, | |
objv_dataset=False, | |
use_eos_feature=False, | |
clip_grad_throld=1.0, | |
allow_tf32=True, | |
save_img=False, | |
use_train_trajectory= | |
False, # use train trajectory to sample images for fid calculation | |
unconditional_guidance_scale=1.0, | |
num_samples=10, | |
num_instances=10, # for i23d, loop different condition | |
) | |
defaults.update(model_and_diffusion_defaults()) | |
defaults.update(continuous_diffusion_defaults()) | |
defaults.update(encoder_and_nsr_defaults()) # type: ignore | |
defaults.update(dataset_defaults()) # type: ignore | |
defaults.update(loss_defaults()) | |
defaults.update(control_net_defaults()) | |
parser = argparse.ArgumentParser() | |
add_dict_to_argparser(parser, defaults) | |
# ! add transport args | |
parse_transport_args(parser) | |
return parser | |
if __name__ == "__main__": | |
# os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO" | |
# os.environ["NCCL_DEBUG"] = "INFO" | |
th.multiprocessing.set_start_method('spawn') | |
os.environ[ | |
"TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. | |
args = create_argparser().parse_args() | |
args.local_rank = int(os.environ["LOCAL_RANK"]) | |
args.gpus = th.cuda.device_count() | |
# opts = dnnlib.EasyDict(vars(args)) # compatiable with triplane original settings | |
# opts = args | |
args.rendering_kwargs = rendering_options_defaults(args) | |
# Launch processes. | |
logger.log('Launching processes...') | |
logger.log('Available devices ', th.cuda.device_count()) | |
logger.log('Current cuda device ', th.cuda.current_device()) | |
# logger.log('GPU Device name:', th.cuda.get_device_name(th.cuda.current_device())) | |
try: | |
training_loop(args) | |
# except KeyboardInterrupt as e: | |
except Exception as e: | |
# print(e) | |
traceback.print_exc() | |
dist_util.cleanup() # clean port and socket when ctrl+c | |