Spaces:
Running
on
Zero
Running
on
Zero
from typing import List, Optional, Tuple | |
from inspect import isfunction | |
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, einsum | |
from einops import rearrange, repeat | |
from packaging import version | |
from pdb import set_trace as st | |
from ldm.modules.diffusionmodules.util import checkpoint | |
# from torch.nn import LayerNorm | |
try: | |
from apex.normalization import FusedRMSNorm as RMSNorm | |
except: | |
from dit.norm import RMSNorm | |
# CrossAttn precision handling | |
import os | |
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32") | |
from xformers.ops import MemoryEfficientAttentionFlashAttentionOp, MemoryEfficientAttentionCutlassOp | |
# from xformers.ops import RMSNorm, fmha, rope_padded | |
# import apex | |
# from apex.normalization import FusedRMSNorm as RMSNorm | |
# if version.parse(torch.__version__) >= version.parse("2.0.0"): | |
# SDP_IS_AVAILABLE = True | |
# # from torch.backends.cuda import SDPBackend, sdp_kernel | |
# from torch.nn.attention import sdpa_kernel, SDPBackend | |
# BACKEND_MAP = { | |
# SDPBackend.MATH: { | |
# "enable_math": True, | |
# "enable_flash": False, | |
# "enable_mem_efficient": False, | |
# }, | |
# SDPBackend.FLASH_ATTENTION: { | |
# "enable_math": False, | |
# "enable_flash": True, | |
# "enable_mem_efficient": False, | |
# }, | |
# SDPBackend.EFFICIENT_ATTENTION: { | |
# "enable_math": False, | |
# "enable_flash": False, | |
# "enable_mem_efficient": True, | |
# }, | |
# None: {"enable_math": True, "enable_flash": True, "enable_mem_efficient": True}, | |
# } | |
# else: | |
# from contextlib import nullcontext | |
SDP_IS_AVAILABLE = False | |
# sdpa_kernel = nullcontext | |
# BACKEND_MAP = {} | |
# logpy.warn( | |
# f"No SDP backend available, likely because you are running in pytorch " | |
# f"versions < 2.0. In fact, you are using PyTorch {torch.__version__}. " | |
# f"You might want to consider upgrading." | |
# ) | |
def exists(val): | |
return val is not None | |
def uniq(arr): | |
return{el: True for el in arr}.keys() | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def max_neg_value(t): | |
return -torch.finfo(t.dtype).max | |
def init_(tensor): | |
dim = tensor.shape[-1] | |
std = 1 / math.sqrt(dim) | |
tensor.uniform_(-std, std) | |
return tensor | |
# feedforward | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
project_in = nn.Sequential( | |
nn.Linear(dim, inner_dim), | |
nn.GELU() | |
) if not glu else GEGLU(dim, inner_dim) | |
self.net = nn.Sequential( | |
project_in, | |
nn.Dropout(dropout), | |
nn.Linear(inner_dim, dim_out) | |
) | |
def forward(self, x): | |
return self.net(x) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def Normalize(in_channels): | |
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
class LinearAttention(nn.Module): | |
def __init__(self, dim, heads=4, dim_head=32): | |
super().__init__() | |
self.heads = heads | |
hidden_dim = dim_head * heads | |
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) | |
self.to_out = nn.Conv2d(hidden_dim, dim, 1) | |
def forward(self, x): | |
b, c, h, w = x.shape | |
qkv = self.to_qkv(x) | |
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) | |
k = k.softmax(dim=-1) | |
context = torch.einsum('bhdn,bhen->bhde', k, v) | |
out = torch.einsum('bhde,bhdn->bhen', context, q) | |
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) | |
return self.to_out(out) | |
class SpatialSelfAttention(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.k = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.v = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.proj_out = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b,c,h,w = q.shape | |
q = rearrange(q, 'b c h w -> b (h w) c') | |
k = rearrange(k, 'b c h w -> b c (h w)') | |
w_ = torch.einsum('bij,bjk->bik', q, k) | |
w_ = w_ * (int(c)**(-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
v = rearrange(v, 'b c h w -> b c (h w)') | |
w_ = rearrange(w_, 'b i j -> b j i') | |
h_ = torch.einsum('bij,bjk->bik', v, w_) | |
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) | |
h_ = self.proj_out(h_) | |
return x+h_ | |
class CrossAttention(nn.Module): | |
def __init__( | |
self, | |
query_dim, | |
context_dim=None, | |
heads=8, | |
dim_head=64, | |
dropout=0.0, | |
# backend=None, | |
# backend=SDPBackend.FLASH_ATTENTION, # FA implemented by torch. | |
**kwargs, | |
): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential( | |
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) | |
) | |
# self.backend = backend | |
def forward( | |
self, | |
x, | |
context=None, | |
mask=None, | |
additional_tokens=None, | |
n_times_crossframe_attn_in_self=0, | |
): | |
h = self.heads | |
if additional_tokens is not None: | |
# get the number of masked tokens at the beginning of the output sequence | |
n_tokens_to_mask = additional_tokens.shape[1] | |
# add additional token | |
x = torch.cat([additional_tokens, x], dim=1) | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
v = self.to_v(context) | |
if n_times_crossframe_attn_in_self: | |
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439 | |
assert x.shape[0] % n_times_crossframe_attn_in_self == 0 | |
n_cp = x.shape[0] // n_times_crossframe_attn_in_self | |
k = repeat( | |
k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp | |
) | |
v = repeat( | |
v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp | |
) | |
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) | |
## old | |
""" | |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale | |
del q, k | |
if exists(mask): | |
mask = rearrange(mask, 'b ... -> b (...)') | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
sim.masked_fill_(~mask, max_neg_value) | |
# attention, what we cannot get enough of | |
sim = sim.softmax(dim=-1) | |
out = einsum('b i j, b j d -> b i d', sim, v) | |
""" | |
## new | |
# with sdpa_kernel(**BACKEND_MAP[self.backend]): | |
# with sdpa_kernel([self.backend]): # new signature | |
# print("dispatching into backend", self.backend, "q/k/v shape: ", q.shape, k.shape, v.shape) | |
out = F.scaled_dot_product_attention( | |
q, k, v, attn_mask=mask | |
) # scale is dim_head ** -0.5 per default | |
del q, k, v | |
out = rearrange(out, "b h n d -> b n (h d)", h=h) | |
if additional_tokens is not None: | |
# remove additional token | |
out = out[:, n_tokens_to_mask:] | |
return self.to_out(out) | |
# class CrossAttention(nn.Module): | |
# def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): | |
# super().__init__() | |
# inner_dim = dim_head * heads | |
# context_dim = default(context_dim, query_dim) | |
# self.scale = dim_head ** -0.5 | |
# self.heads = heads | |
# self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
# self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
# self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
# self.to_out = nn.Sequential( | |
# nn.Linear(inner_dim, query_dim), | |
# nn.Dropout(dropout) | |
# ) | |
# def forward(self, x, context=None, mask=None): | |
# h = self.heads | |
# q = self.to_q(x) | |
# context = default(context, x) | |
# k = self.to_k(context) | |
# v = self.to_v(context) | |
# q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
# sim = einsum('b i d, b j d -> b i j', q, k) * self.scale | |
# if exists(mask): | |
# mask = rearrange(mask, 'b ... -> b (...)') | |
# max_neg_value = -torch.finfo(sim.dtype).max | |
# mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
# sim.masked_fill_(~mask, max_neg_value) | |
# # attention, what we cannot get enough of | |
# attn = sim.softmax(dim=-1) | |
# out = einsum('b i j, b j d -> b i d', attn, v) | |
# out = rearrange(out, '(b h) n d -> b n (h d)', h=h) | |
# return self.to_out(out) | |
# class BasicTransformerBlock(nn.Module): | |
# def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True): | |
# super().__init__() | |
# self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention | |
# self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
# self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, | |
# heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none | |
# self.norm1 = nn.LayerNorm(dim) | |
# self.norm2 = nn.LayerNorm(dim) | |
# self.norm3 = nn.LayerNorm(dim) | |
# self.checkpoint = checkpoint | |
# def forward(self, x, context=None): | |
# return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) | |
# def _forward(self, x, context=None): | |
# x = self.attn1(self.norm1(x)) + x | |
# x = self.attn2(self.norm2(x), context=context) + x | |
# x = self.ff(self.norm3(x)) + x | |
# return x | |
try: | |
# from xformers.triton import FusedLayerNorm as LayerNorm | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILBLE = True | |
except: | |
XFORMERS_IS_AVAILBLE = False | |
from typing import Optional, Any | |
class MemoryEfficientCrossAttention(nn.Module): | |
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, enable_rmsnorm=False, qk_norm=False, no_flash_op=False, enable_rope=False, qk_norm_fullseq=False,): | |
super().__init__() | |
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using " | |
f"{heads} heads.") | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.heads = heads | |
self.dim_head = dim_head | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.enable_rope = enable_rope | |
# if enable_rmsnorm: | |
# self.q_rmsnorm = RMSNorm(query_dim, eps=1e-5) | |
# self.k_rmsnorm = RMSNorm(context_dim, eps=1e-5) | |
if qk_norm_fullseq: # as in lumina | |
self.q_norm = RMSNorm(inner_dim, elementwise_affine=True) if qk_norm else nn.Identity() | |
self.k_norm = RMSNorm(inner_dim, elementwise_affine=True) if qk_norm else nn.Identity() | |
else: | |
self.q_norm = RMSNorm(self.dim_head, elementwise_affine=True) if qk_norm else nn.Identity() | |
self.k_norm = RMSNorm(self.dim_head, elementwise_affine=True) if qk_norm else nn.Identity() | |
# if not qk_norm: | |
# logpy.warn( | |
# f"No QK Norm activated, wish you good luck..." | |
# ) | |
# self.enable_rmsnorm = enable_rmsnorm | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
# self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
# self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) | |
if no_flash_op: | |
self.attention_op = MemoryEfficientAttentionCutlassOp # force flash attention | |
else: | |
self.attention_op: Optional[Any] = None # enable | |
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): | |
""" | |
Reshape frequency tensor for broadcasting it with another tensor. | |
This function reshapes the frequency tensor to have the same shape as | |
the target tensor 'x' for the purpose of broadcasting the frequency | |
tensor during element-wise operations. | |
Args: | |
freqs_cis (torch.Tensor): Frequency tensor to be reshaped. | |
x (torch.Tensor): Target tensor for broadcasting compatibility. | |
Returns: | |
torch.Tensor: Reshaped frequency tensor. | |
Raises: | |
AssertionError: If the frequency tensor doesn't match the expected | |
shape. | |
AssertionError: If the target tensor 'x' doesn't have the expected | |
number of dimensions. | |
""" | |
ndim = x.ndim | |
assert 0 <= 1 < ndim | |
assert freqs_cis.shape == (x.shape[-2], x.shape[-1]) | |
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] | |
return freqs_cis.view(*shape) | |
def apply_rotary_emb( | |
xq: torch.Tensor, | |
xk: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Apply rotary embeddings to input tensors using the given frequency | |
tensor. | |
This function applies rotary embeddings to the given query 'xq' and | |
key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The | |
input tensors are reshaped as complex numbers, and the frequency tensor | |
is reshaped for broadcasting compatibility. The resulting tensors | |
contain rotary embeddings and are returned as real tensors. | |
Args: | |
xq (torch.Tensor): Query tensor to apply rotary embeddings. | |
xk (torch.Tensor): Key tensor to apply rotary embeddings. | |
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex | |
exponentials. | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor | |
and key tensor with rotary embeddings. | |
""" | |
with torch.cuda.amp.autocast(enabled=False): | |
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) | |
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) | |
freqs_cis = MemoryEfficientCrossAttention.reshape_for_broadcast(freqs_cis, xq_) | |
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) | |
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) | |
return xq_out.type_as(xq), xk_out.type_as(xk) | |
def forward(self, x, context=None, freqs_cis=None, mask=None): | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
v = self.to_v(context) | |
dtype = q.dtype | |
b, _, _ = q.shape | |
if self.enable_rope: | |
q, k = self.q_norm(q), self.k_norm(k) # for stable amp training | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, t.shape[1], self.heads, self.dim_head) | |
.permute(0, 2, 1, 3) | |
# .reshape(b * self.heads, t.shape[1], self.dim_head) | |
.reshape(b, self.heads, t.shape[1], self.dim_head) | |
.contiguous(), | |
(q, k, v), | |
) | |
assert freqs_cis is not None | |
q, k = MemoryEfficientCrossAttention.apply_rotary_emb(q, k, freqs_cis=freqs_cis) | |
q, k = q.to(dtype), k.to(dtype) | |
pass | |
else: | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, t.shape[1], self.heads, self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b * self.heads, t.shape[1], self.dim_head) | |
.contiguous(), | |
(q, k, v), | |
) | |
q, k = self.q_norm(q), self.k_norm(k) # for stable amp training | |
# actually compute the attention, what we cannot get enough of | |
# out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) | |
# actually compute the attention, what we cannot get enough of | |
if version.parse(xformers.__version__) >= version.parse("0.0.21"): | |
# NOTE: workaround for | |
# https://github.com/facebookresearch/xformers/issues/845 | |
max_bs = 32768 | |
N = q.shape[0] | |
n_batches = math.ceil(N / max_bs) | |
out = list() | |
for i_batch in range(n_batches): | |
batch = slice(i_batch * max_bs, (i_batch + 1) * max_bs) | |
out.append( | |
xformers.ops.memory_efficient_attention( | |
q[batch], | |
k[batch], | |
v[batch], | |
attn_bias=None, | |
# op=self.attention_op, | |
) | |
) | |
out = torch.cat(out, 0) | |
else: | |
out = xformers.ops.memory_efficient_attention( | |
q, k, v, attn_bias=None, op=self.attention_op | |
) | |
# TODO: Use this directly in the attention operation, as a bias | |
if exists(mask): | |
raise NotImplementedError | |
out = ( | |
out.unsqueeze(0) | |
.reshape(b, self.heads, out.shape[1], self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, out.shape[1], self.heads * self.dim_head) | |
) | |
return self.to_out(out) | |
class JointMemoryEfficientCrossAttention(nn.Module): | |
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): | |
super().__init__() | |
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using " | |
f"{heads} heads.") | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.heads = heads | |
self.dim_head = dim_head | |
self.to_qkv_t = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_qkv_i = nn.Linear(query_dim, inner_dim, bias=False) | |
# self.to_k = nn.Linear(context_dim*2, inner_dim, bias=False) | |
# self.to_v = nn.Linear(context_dim*2, inner_dim, bias=False) | |
# self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
# self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) | |
self.attention_op: Optional[Any] = None | |
# self.attention_op: Optional[Any] = MemoryEfficientAttentionFlashAttentionOp | |
# TODO, add later for stable AMP training. | |
# self.rms_norm_t_q = RMSNorm(args.dim, eps=args.norm_eps) | |
# self.rms_norm_t_k = RMSNorm(args.dim, eps=args.norm_eps) | |
# self.rms_norm_i_q = RMSNorm(args.dim, eps=args.norm_eps) | |
# self.rms_norm_i_k = RMSNorm(args.dim, eps=args.norm_eps) | |
def forward(self, x, context=None, mask=None): | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
v = self.to_v(context) | |
b, _, _ = q.shape | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, t.shape[1], self.heads, self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b * self.heads, t.shape[1], self.dim_head) | |
.contiguous(), | |
(q, k, v), | |
) | |
# actually compute the attention, what we cannot get enough of | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) | |
if exists(mask): | |
raise NotImplementedError | |
out = ( | |
out.unsqueeze(0) | |
.reshape(b, self.heads, out.shape[1], self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, out.shape[1], self.heads * self.dim_head) | |
) | |
return self.to_out(out) | |
class BasicTransformerBlock(nn.Module): | |
ATTENTION_MODES = { | |
"softmax": CrossAttention, # vanilla attention | |
"softmax-xformers": MemoryEfficientCrossAttention | |
} | |
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, | |
disable_self_attn=False): | |
super().__init__() | |
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax" | |
assert attn_mode in self.ATTENTION_MODES | |
attn_cls = self.ATTENTION_MODES[attn_mode] | |
self.disable_self_attn = disable_self_attn | |
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, | |
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, | |
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def forward(self, x, context=None): | |
# return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) | |
return self._forward(x, context) | |
def _forward(self, x, context=None): | |
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x | |
x = self.attn2(self.norm2(x), context=context) + x | |
x = self.ff(self.norm3(x)) + x | |
return x | |
class SpatialTransformer(nn.Module): | |
""" | |
Transformer block for image-like data. | |
First, project the input (aka embedding) | |
and reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
""" | |
def __init__(self, in_channels, n_heads, d_head, | |
depth=1, dropout=0., context_dim=None): | |
super().__init__() | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = Normalize(in_channels) | |
self.proj_in = nn.Conv2d(in_channels, | |
inner_dim, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.transformer_blocks = nn.ModuleList( | |
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) | |
for d in range(depth)] | |
) | |
self.proj_out = zero_module(nn.Conv2d(inner_dim, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0)) | |
def forward(self, x, context=None): | |
# note: if no context is given, cross-attention defaults to self-attention | |
b, c, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
x = self.proj_in(x) | |
x = rearrange(x, 'b c h w -> b (h w) c') | |
for block in self.transformer_blocks: | |
x = block(x, context=context) | |
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w) | |
x = self.proj_out(x) | |
return x + x_in | |
class BasicTransformerBlock3D(BasicTransformerBlock): | |
def forward(self, x, context=None, num_frames=1): | |
# return checkpoint(self._forward, (x, context, num_frames), self.parameters(), self.checkpoint) | |
return self._forward(x, context, num_frames) # , self.parameters(), self.checkpoint | |
def _forward(self, x, context=None, num_frames=1): | |
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous() | |
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x | |
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous() | |
x = self.attn2(self.norm2(x), context=context) + x | |
x = self.ff(self.norm3(x)) + x | |
return x | |
class SpatialTransformer3D(nn.Module): | |
''' 3D self-attention ''' | |
def __init__(self, in_channels, n_heads, d_head, | |
depth=1, dropout=0., context_dim=None, | |
disable_self_attn=False, use_linear=False, | |
use_checkpoint=True): | |
super().__init__() | |
if exists(context_dim) and not isinstance(context_dim, list): | |
context_dim = [context_dim] | |
elif context_dim is None: | |
context_dim = [None] * depth | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = Normalize(in_channels) | |
if not use_linear: | |
self.proj_in = nn.Conv2d(in_channels, | |
inner_dim, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
else: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[BasicTransformerBlock3D(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], | |
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint) | |
for d in range(depth)] | |
) | |
if not use_linear: | |
self.proj_out = zero_module(nn.Conv2d(inner_dim, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0)) | |
else: | |
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) | |
self.use_linear = use_linear | |
def forward(self, x, context=None, num_frames=1): | |
# note: if no context is given, cross-attention defaults to self-attention | |
if not isinstance(context, list): | |
context = [context] | |
b, c, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
if not self.use_linear: | |
x = self.proj_in(x) | |
x = rearrange(x, 'b c h w -> b (h w) c').contiguous() | |
if self.use_linear: | |
x = self.proj_in(x) | |
for i, block in enumerate(self.transformer_blocks): | |
x = block(x, context=context[i], num_frames=num_frames) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() | |
if not self.use_linear: | |
x = self.proj_out(x) | |
return x + x_in |