Spaces:
Running
on
Zero
Running
on
Zero
"""Calculates the Frechet Inception Distance (FID) to evalulate GANs | |
The FID metric calculates the distance between two distributions of images. | |
Typically, we have summary statistics (mean & covariance matrix) of one | |
of these distributions, while the 2nd distribution is given by a GAN. | |
When run as a stand-alone program, it compares the distribution of | |
images that are stored as PNG/JPEG at a specified location with a | |
distribution given by summary statistics (in pickle format). | |
The FID is calculated by assuming that X_1 and X_2 are the activations of | |
the pool_3 layer of the inception net for generated samples and real world | |
samples respectively. | |
See --help to see further details. | |
Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead | |
of Tensorflow | |
Copyright 2018 Institute of Bioinformatics, JKU Linz | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
""" | |
import ipdb | |
import os | |
from pathlib import Path | |
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser | |
import pyiqa | |
from pdb import set_trace as st | |
import json | |
import numpy as np | |
import torch | |
import torchvision.transforms as TF | |
from PIL import Image | |
from scipy import linalg | |
from torch.nn.functional import adaptive_avg_pool2d | |
import cv2 | |
try: | |
from tqdm import tqdm | |
except ImportError: | |
# If tqdm is not available, provide a mock version of it | |
def tqdm(x): | |
return x | |
from pytorch_fid.inception import InceptionV3 | |
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) | |
parser.add_argument('--batch-size', type=int, default=100, | |
help='Batch size to use') | |
parser.add_argument('--reso', type=int, default=128, | |
help='Batch size to use') | |
parser.add_argument('--num-workers', type=int, default=8, | |
help=('Number of processes to use for data loading. ' | |
'Defaults to `min(8, num_cpus)`')) | |
parser.add_argument('--device', type=str, default=None, | |
help='Device to use. Like cuda, cuda:0 or cpu') | |
parser.add_argument('--dataset', type=str, default='omni', | |
help='Device to use. Like cuda, cuda:0 or cpu') | |
parser.add_argument('--dims', type=int, default=2048, | |
choices=list(InceptionV3.BLOCK_INDEX_BY_DIM), | |
help=('Dimensionality of Inception features to use. ' | |
'By default, uses pool3 features')) | |
parser.add_argument('--save-stats', action='store_true', | |
help=('Generate an npz archive from a directory of samples. ' | |
'The first path is used as input and the second as output.')) | |
parser.add_argument('path', type=str, nargs=2, | |
help=('Paths to the generated images or ' | |
'to .npz statistic files')) | |
IMAGE_EXTENSIONS = {'bmp', 'jpg', 'jpeg', 'pgm', 'png', 'ppm', | |
'tif', 'tiff', 'webp'} | |
class ImagePathDataset(torch.utils.data.Dataset): | |
def __init__(self, files, reso,transforms=None): | |
self.files = files | |
self.transforms = transforms | |
self.reso=reso | |
def __len__(self): | |
return len(self.files) | |
def __getitem__(self, i): | |
path = self.files[i] | |
#ipdb.set_trace() | |
try: | |
img=cv2.imread(path) | |
#if img.mean(-1)>254.9: | |
#img[np.where(img.mean(-1)>254.9)]=0 | |
img=cv2.resize(img,(self.reso,self.reso),interpolation=cv2.INTER_CUBIC) | |
img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB) | |
except: | |
img=cv2.imread(self.files[0]) | |
#if img.mean(-1)>254.9: | |
#img[np.where(img.mean(-1)>254.9)]=0 | |
img=cv2.resize(img,(self.reso,self.reso),interpolation=cv2.INTER_CUBIC) | |
img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB) | |
print(path) | |
#img = Image.open(path).convert('RGB') | |
if self.transforms is not None: | |
img = self.transforms(img) | |
#ipdb.set_trace() | |
return img | |
def get_activations(files, model, batch_size=50, dims=2048, device='cpu', | |
num_workers=16,reso=128): | |
"""Calculates the activations of the pool_3 layer for all images. | |
Params: | |
-- files : List of image files paths | |
-- model : Instance of inception model | |
-- batch_size : Batch size of images for the model to process at once. | |
Make sure that the number of samples is a multiple of | |
the batch size, otherwise some samples are ignored. This | |
behavior is retained to match the original FID score | |
implementation. | |
-- dims : Dimensionality of features returned by Inception | |
-- device : Device to run calculations | |
-- num_workers : Number of parallel dataloader workers | |
Returns: | |
-- A numpy array of dimension (num images, dims) that contains the | |
activations of the given tensor when feeding inception with the | |
query tensor. | |
""" | |
model.eval() | |
if batch_size > len(files): | |
print(('Warning: batch size is bigger than the data size. ' | |
'Setting batch size to data size')) | |
batch_size = len(files) | |
dataset = ImagePathDataset(files, reso,transforms=TF.ToTensor()) | |
dataloader = torch.utils.data.DataLoader(dataset, | |
batch_size=batch_size, | |
shuffle=False, | |
drop_last=False, | |
num_workers=num_workers) | |
pred_arr = np.empty((len(files), dims)) | |
start_idx = 0 | |
for batch in tqdm(dataloader): | |
batch = batch.to(device) | |
#ipdb.set_trace() | |
with torch.no_grad(): | |
pred = model(batch)[0] | |
# If model output is not scalar, apply global spatial average pooling. | |
# This happens if you choose a dimensionality not equal 2048. | |
if pred.size(2) != 1 or pred.size(3) != 1: | |
pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) | |
#ipdb.set_trace() | |
pred = pred.squeeze(3).squeeze(2).cpu().numpy() | |
pred_arr[start_idx:start_idx + pred.shape[0]] = pred | |
start_idx = start_idx + pred.shape[0] | |
return pred_arr | |
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
"""Numpy implementation of the Frechet Distance. | |
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
and X_2 ~ N(mu_2, C_2) is | |
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
Stable version by Dougal J. Sutherland. | |
Params: | |
-- mu1 : Numpy array containing the activations of a layer of the | |
inception net (like returned by the function 'get_predictions') | |
for generated samples. | |
-- mu2 : The sample mean over activations, precalculated on an | |
representative data set. | |
-- sigma1: The covariance matrix over activations for generated samples. | |
-- sigma2: The covariance matrix over activations, precalculated on an | |
representative data set. | |
Returns: | |
-- : The Frechet Distance. | |
""" | |
#ipdb.set_trace() | |
mu1 = np.atleast_1d(mu1) | |
mu2 = np.atleast_1d(mu2) | |
sigma1 = np.atleast_2d(sigma1) | |
sigma2 = np.atleast_2d(sigma2) | |
assert mu1.shape == mu2.shape, \ | |
'Training and test mean vectors have different lengths' | |
assert sigma1.shape == sigma2.shape, \ | |
'Training and test covariances have different dimensions' | |
diff = mu1 - mu2 | |
# Product might be almost singular | |
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
if not np.isfinite(covmean).all(): | |
msg = ('fid calculation produces singular product; ' | |
'adding %s to diagonal of cov estimates') % eps | |
print(msg) | |
offset = np.eye(sigma1.shape[0]) * eps | |
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
# Numerical error might give slight imaginary component | |
if np.iscomplexobj(covmean): | |
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
m = np.max(np.abs(covmean.imag)) | |
raise ValueError('Imaginary component {}'.format(m)) | |
covmean = covmean.real | |
tr_covmean = np.trace(covmean) | |
return (diff.dot(diff) + np.trace(sigma1) | |
+ np.trace(sigma2) - 2 * tr_covmean) | |
def calculate_activation_statistics(files, model, batch_size=50, dims=2048, | |
device='cpu', num_workers=1,reso=128): | |
"""Calculation of the statistics used by the FID. | |
Params: | |
-- files : List of image files paths | |
-- model : Instance of inception model | |
-- batch_size : The images numpy array is split into batches with | |
batch size batch_size. A reasonable batch size | |
depends on the hardware. | |
-- dims : Dimensionality of features returned by Inception | |
-- device : Device to run calculations | |
-- num_workers : Number of parallel dataloader workers | |
Returns: | |
-- mu : The mean over samples of the activations of the pool_3 layer of | |
the inception model. | |
-- sigma : The covariance matrix of the activations of the pool_3 layer of | |
the inception model. | |
""" | |
act = get_activations(files, model, batch_size, dims, device, num_workers,reso=reso) | |
mu = np.mean(act, axis=0) | |
sigma = np.cov(act, rowvar=False) | |
return mu, sigma | |
def compute_statistics_of_path(path, model, batch_size, dims, device, | |
num_workers=1,reso=512,dataset='gso'): | |
basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid/gso_gt" | |
# basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid-withtop/gso_gt" | |
# basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-free3d/metrics/fid-withtop/gso_gt" | |
# basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-/metrics/fid-withtop/gso_gt" | |
os.makedirs(os.path.join(basepath), exist_ok=True) | |
objv_dataset = '/mnt/sfs-common/yslan/Dataset/Obajverse/chunk-jpeg-normal/bs_16_fixsave3/170K/512/' | |
dataset_json = os.path.join(objv_dataset, 'dataset.json') | |
with open(dataset_json, 'r') as f: | |
dataset_json = json.load(f) | |
# all_objs = dataset_json['Animals'][::3][:6250] | |
all_objs = dataset_json['Animals'][::3][1100:2200] | |
all_objs = all_objs[:600][:] | |
# all_objs = all_objs[100:600] | |
# all_objs = all_objs[:500] | |
# if 'shapenet' in dataset: | |
# if 'shapenet' in dataset: | |
try: | |
try: | |
m=np.load(os.path.join(basepath,path.split('/')[-1]+str(reso)+'mean.npy')) | |
s=np.load(os.path.join(basepath,path.split('/')[-1]+str(reso)+'std.npy')) | |
print('loading_dataset',dataset) | |
except: | |
files=[] | |
# ! load instances for I23D inference | |
# for obj_folder in tqdm(sorted(os.listdir(path))): | |
# for idx in range(0,25): | |
# img_name = os.path.join(path, obj_folder, 'rgba', f'{idx:03}.png') | |
# files.append(img_name) | |
# ! free3d rendering | |
# for obj_folder in tqdm(sorted(os.listdir(path))): | |
# for idx in range(0,25): | |
# # img_name = os.path.join(path, obj_folder, 'rgba', f'{idx:03}.png') | |
# img_name = os.path.join(path, obj_folder, 'render_mvs_25', 'model', f'{idx:03}.png') | |
# files.append(img_name) | |
# ! objv loading | |
for obj_folder in tqdm(all_objs): | |
obj_folder = obj_folder[:-2] # to load 3 chunks | |
for batch in range(1,4): | |
for idx in range(8): | |
files.append(os.path.join(path, obj_folder, str(batch), f'{idx}.jpg')) | |
# for name in os.listdir(path): | |
# #ipdb.set_trace() | |
# # if name not in false1: #and name not in false2 and name not in false3: | |
# if name in false1: #and name not in false2 and name not in false3: | |
# img=os.path.join(path,name,'rgb') | |
# #ipdb.set_trace() | |
# files = files+sorted([os.path.join(img, idd) for idd in os.listdir(img) if idd.endswith('.png')]) | |
if len(files) > 50000: | |
files = files[:50000] | |
break | |
#files=files[:5] | |
m, s = calculate_activation_statistics(files, model, batch_size, | |
dims, device, num_workers,reso=reso) | |
path = Path(path) | |
# ipdb.set_trace() | |
np.save(os.path.join(basepath,path.name+str(reso)+'mean'), m) | |
np.save(os.path.join(basepath,path.name+str(reso)+'std'), s) | |
except Exception as e: | |
print(f'{dataset} failed, ', e) | |
return m, s | |
def compute_statistics_of_path_new(path, model, batch_size, dims, device, | |
num_workers=1,reso=128,dataset='omni'): | |
# basepath='/mnt/lustre/yslan/logs/nips23/LSGM/cldm/cmetric/shapenet-outs/fid'+str(reso)+'test'+dataset | |
# basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir/metrics/fid/'+str(reso)+dataset | |
# basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-free3d/metrics/fid/'+str(reso)+dataset | |
# basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid/'+str(reso)+dataset | |
# basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid-subset/'+str(reso)+dataset | |
basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid/'+str(reso)+dataset | |
# basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid-withtop/'+str(reso)+dataset | |
# basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-free3d/metrics/fid/'+str(reso)+dataset | |
objv_dataset = '/mnt/sfs-common/yslan/Dataset/Obajverse/chunk-jpeg-normal/bs_16_fixsave3/170K/512/' | |
dataset_json = os.path.join(objv_dataset, 'dataset.json') | |
with open(dataset_json, 'r') as f: | |
dataset_json = json.load(f) | |
# all_objs = dataset_json['Animals'][::3][:6250] | |
all_objs = dataset_json['Animals'][::3][1100:2200] | |
all_objs = all_objs[:600] | |
os.makedirs(os.path.join(basepath), exist_ok=True) | |
sample_name=path.split('/')[-1] | |
try: | |
try: | |
# ipdb.set_trace() | |
m=np.load(os.path.join(basepath,sample_name+str(reso)+'mean.npy')) | |
s=np.load(os.path.join(basepath,sample_name+str(reso)+'std.npy')) | |
print('loading_sample') | |
except: | |
files=[] | |
# for name in os.listdir(path): | |
# img=os.path.join(path,name) | |
# files.append(img) # ! directly append | |
# for loading gso-like folder | |
# st() | |
# for obj_folder in sorted(os.listdir(path)): | |
# if obj_folder == 'runs': | |
# continue | |
# if not os.path.isdir(os.path.join(path, obj_folder)): | |
# continue | |
# for idx in [0]: | |
# for i in range(24): | |
# if 'GA' in path: | |
# img=os.path.join(path,obj_folder, str(idx),f'sample-0-{i}.jpg') | |
# else: | |
# img=os.path.join(path,obj_folder, str(idx),f'{i}.jpg') | |
# # ipdb.set_trace() | |
# files.append(img) | |
for obj_folder in tqdm(all_objs): | |
obj_folder = '/'.join(obj_folder.split('/')[1:]) | |
for idx in range(24): | |
# files.append(os.path.join(path, obj_folder, f'{idx}.jpg')) | |
if 'Lara' in path: | |
files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0.jpg', f'{idx}.jpg')) | |
elif 'GA' in path: | |
files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0', f'sample-0-{idx}.jpg')) | |
elif 'LRM' in path: | |
files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0', f'{idx}.jpg')) | |
else: | |
files.append(os.path.join(path, obj_folder, '0', f'{idx}.jpg')) | |
files=files[:50000] | |
m, s = calculate_activation_statistics(files, model, batch_size, | |
dims, device, num_workers,reso=reso) | |
path = Path(path) | |
np.save(os.path.join(basepath,sample_name+str(reso)+'mean'), m) | |
np.save(os.path.join(basepath,sample_name+str(reso)+'std'), s) | |
except Exception as e: | |
print('error sample image', e) | |
#ipdb.set_trace() | |
return m, s | |
def calculate_fid_given_paths(paths, batch_size, device, dims, num_workers=1,reso=128,dataset='omni'): | |
"""Calculates the FID of two paths""" | |
# for p in paths: | |
# if not os.path.exists(p): | |
# raise RuntimeError('Invalid path: %s' % p) | |
# block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] | |
# model = InceptionV3([block_idx]).to(device) | |
musiq_metric = pyiqa.create_metric('musiq') | |
all_musiq = [] | |
for file in tqdm(os.listdir(str(paths[1]))[:]): | |
musiq_value = musiq_metric(os.path.join(paths[1], file)) | |
all_musiq.append(musiq_value) | |
musiq_value = sum(all_musiq) / len(all_musiq) | |
# fid_metric = pyiqa.create_metric('fid') | |
# fid_value = fid_metric(paths[0], paths[1]) | |
# m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, # ! GT data | |
# dims, device, num_workers,reso=reso,dataset=dataset) | |
# # ipdb.set_trace() | |
# m2, s2 = compute_statistics_of_path_new(paths[1], model, batch_size, # ! generated data | |
# dims, device, num_workers,reso=reso,dataset=dataset) | |
# fid_value = calculate_frechet_distance(m1, s1, m2, s2) | |
# return fid_value | |
return musiq_value | |
def save_fid_stats(paths, batch_size, device, dims, num_workers=1): | |
"""Calculates the FID of two paths""" | |
# if not os.path.exists(paths[0]): | |
# raise RuntimeError('Invalid path: %s' % paths[0]) | |
# if os.path.exists(paths[1]): | |
# raise RuntimeError('Existing output file: %s' % paths[1]) | |
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] | |
model = InceptionV3([block_idx]).to(device) | |
print(f"Saving statistics for {paths[0]}") | |
m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, | |
dims, device, num_workers) | |
np.savez_compressed(paths[1], mu=m1, sigma=s1) | |
def main(): | |
args = parser.parse_args() | |
if args.device is None: | |
device = torch.device('cuda' if (torch.cuda.is_available()) else 'cpu') | |
else: | |
device = torch.device(args.device) | |
if args.num_workers is None: | |
try: | |
num_cpus = len(os.sched_getaffinity(0)) | |
except AttributeError: | |
# os.sched_getaffinity is not available under Windows, use | |
# os.cpu_count instead (which may not return the *available* number | |
# of CPUs). | |
num_cpus = os.cpu_count() | |
num_workers = min(num_cpus, 8) if num_cpus is not None else 0 | |
else: | |
num_workers = args.num_workers | |
if args.save_stats: | |
save_fid_stats(args.path, args.batch_size, device, args.dims, num_workers) | |
return | |
#ipdb.set_trace() | |
fid_value = calculate_fid_given_paths(args.path, | |
args.batch_size, | |
device, | |
args.dims, | |
num_workers,args.reso,args.dataset) | |
print(f'{args.dataset} FID: ', fid_value) | |
if __name__ == '__main__': | |
main() | |