Spaces:
Running
on
Zero
Running
on
Zero
GaussianAnything-AIGC3D
/
submodules
/diff-surfel-rasterization
/third_party
/glm
/test
/gtx
/gtx_pca.cpp
template<typename T> | |
T myEpsilon(); | |
template<> | |
GLM_INLINE GLM_CONSTEXPR float myEpsilon<float>() { return 0.00001f; } | |
template<> | |
GLM_INLINE GLM_CONSTEXPR double myEpsilon<double>() { return 0.000001; } | |
template<glm::length_t D, typename T, glm::qualifier Q> | |
bool vectorEpsilonEqual(glm::vec<D, T, Q> const& a, glm::vec<D, T, Q> const& b, T epsilon) | |
{ | |
for (int c = 0; c < D; ++c) | |
if (!glm::epsilonEqual(a[c], b[c], epsilon)) | |
{ | |
fprintf(stderr, "failing vectorEpsilonEqual: [%d] %lf != %lf (~%lf)\n", | |
c, | |
static_cast<double>(a[c]), | |
static_cast<double>(b[c]), | |
static_cast<double>(epsilon) | |
); | |
return false; | |
} | |
return true; | |
} | |
template<glm::length_t D, typename T, glm::qualifier Q> | |
bool matrixEpsilonEqual(glm::mat<D, D, T, Q> const& a, glm::mat<D, D, T, Q> const& b, T epsilon) | |
{ | |
for (int c = 0; c < D; ++c) | |
for (int r = 0; r < D; ++r) | |
if (!glm::epsilonEqual(a[c][r], b[c][r], epsilon)) | |
{ | |
fprintf(stderr, "failing vectorEpsilonEqual: [%d][%d] %lf != %lf (~%lf)\n", | |
c, r, | |
static_cast<double>(a[c][r]), | |
static_cast<double>(b[c][r]), | |
static_cast<double>(epsilon) | |
); | |
return false; | |
} | |
return true; | |
} | |
template<typename T> | |
GLM_INLINE bool sameSign(T const& a, T const& b) | |
{ | |
return ((a >= 0) && (b >= 0)) || ((a < 0) && (b < 0)); | |
} | |
template<typename T> | |
T failReport(T line) | |
{ | |
fprintf(stderr, "Failed in line %d\n", static_cast<int>(line)); | |
return line; | |
} | |
// Test data: 1AGA 'agarose double helix' | |
// https://www.rcsb.org/structure/1aga | |
// The fourth coordinate is randomized | |
namespace _1aga | |
{ | |
// Fills `outTestData` with hard-coded atom positions from 1AGA | |
// The fourth coordinate is randomized | |
template<typename vec> | |
void fillTestData(std::vector<vec>& outTestData) | |
{ | |
// x,y,z coordinates copied from RCSB PDB file of 1AGA | |
// w coordinate randomized with standard normal distribution | |
static const double _1aga[] = { | |
3.219, -0.637, 19.462, 2.286, | |
4.519, 0.024, 18.980, -0.828, | |
4.163, 1.425, 18.481, -0.810, | |
3.190, 1.341, 17.330, -0.170, | |
1.962, 0.991, 18.165, 0.816, | |
2.093, 1.952, 19.331, 0.276, | |
5.119, -0.701, 17.908, -0.490, | |
3.517, 2.147, 19.514, -0.207, | |
2.970, 2.609, 16.719, 0.552, | |
2.107, -0.398, 18.564, 0.403, | |
2.847, 2.618, 15.335, 0.315, | |
1.457, 3.124, 14.979, 0.683, | |
1.316, 3.291, 13.473, 0.446, | |
2.447, 4.155, 12.931, 1.324, | |
3.795, 3.614, 13.394, 0.112, | |
4.956, 4.494, 12.982, 0.253, | |
0.483, 2.217, 15.479, 1.316, | |
0.021, 3.962, 13.166, 1.522, | |
2.311, 5.497, 13.395, 0.248, | |
3.830, 3.522, 14.827, 0.591, | |
5.150, 4.461, 11.576, 0.635, | |
-1.057, 3.106, 13.132, 0.191, | |
-2.280, 3.902, 12.650, 1.135, | |
-3.316, 2.893, 12.151, 0.794, | |
-2.756, 2.092, 11.000, 0.720, | |
-1.839, 1.204, 11.835, -1.172, | |
-2.737, 0.837, 13.001, -0.313, | |
-1.952, 4.784, 11.578, 2.082, | |
-3.617, 1.972, 13.184, 0.653, | |
-3.744, 1.267, 10.389, -0.413, | |
-0.709, 2.024, 12.234, -1.747, | |
-3.690, 1.156, 9.005, -1.275, | |
-3.434, -0.300, 8.649, 0.441, | |
-3.508, -0.506, 7.143, 0.237, | |
-4.822, 0.042, 6.601, -2.856, | |
-5.027, 1.480, 7.064, 0.985, | |
-6.370, 2.045, 6.652, 0.915, | |
-2.162, -0.690, 9.149, 1.100, | |
-3.442, -1.963, 6.836, -0.081, | |
-5.916, -0.747, 7.065, -2.345, | |
-4.965, 1.556, 8.497, 0.504, | |
-6.439, 2.230, 5.246, 1.451, | |
-2.161, -2.469, 6.802, -1.171, | |
-2.239, -3.925, 6.320, -1.434, | |
-0.847, -4.318, 5.821, 0.098, | |
-0.434, -3.433, 4.670, -1.446, | |
-0.123, -2.195, 5.505, 0.182, | |
0.644, -2.789, 6.671, 0.865, | |
-3.167, -4.083, 5.248, -0.098, | |
0.101, -4.119, 6.854, -0.001, | |
0.775, -3.876, 4.059, 1.061, | |
-1.398, -1.625, 5.904, 0.230, | |
0.844, -3.774, 2.675, 1.313, | |
1.977, -2.824, 2.319, -0.112, | |
2.192, -2.785, 0.813, -0.981, | |
2.375, -4.197, 0.271, -0.355, | |
1.232, -5.093, 0.734, 0.632, | |
1.414, -6.539, 0.322, 0.576, | |
1.678, -1.527, 2.819, -1.187, | |
3.421, -1.999, 0.496, -1.770, | |
3.605, -4.750, 0.735, 1.099, | |
1.135, -5.078, 2.167, 0.854, | |
1.289, -6.691, -1.084, -0.487, | |
-1.057, 3.106, 22.602, -1.297, | |
-2.280, 3.902, 22.120, 0.376, | |
-3.316, 2.893, 21.621, 0.932, | |
-2.756, 2.092, 20.470, 1.680, | |
-1.839, 1.204, 21.305, 0.615, | |
-2.737, 0.837, 22.471, 0.899, | |
-1.952, 4.784, 21.048, -0.521, | |
-3.617, 1.972, 22.654, 0.133, | |
-3.744, 1.267, 19.859, 0.081, | |
-0.709, 2.024, 21.704, 1.420, | |
-3.690, 1.156, 18.475, -0.850, | |
-3.434, -0.300, 18.119, -0.249, | |
-3.508, -0.506, 16.613, 1.434, | |
-4.822, 0.042, 16.071, -2.466, | |
-5.027, 1.480, 16.534, -1.045, | |
-6.370, 2.045, 16.122, 1.707, | |
-2.162, -0.690, 18.619, -2.023, | |
-3.442, -1.963, 16.336, -0.304, | |
-5.916, -0.747, 16.535, 0.979, | |
-4.965, 1.556, 17.967, -1.165, | |
-6.439, 2.230, 14.716, 0.929, | |
-2.161, -2.469, 16.302, -0.234, | |
-2.239, -3.925, 15.820, -0.228, | |
-0.847, -4.318, 15.321, 1.844, | |
-0.434, -3.433, 14.170, 1.132, | |
-0.123, -2.195, 15.005, 0.211, | |
0.644, -2.789, 16.171, -0.632, | |
-3.167, -4.083, 14.748, -0.519, | |
0.101, -4.119, 16.354, 0.173, | |
0.775, -3.876, 13.559, 1.243, | |
-1.398, -1.625, 15.404, -0.187, | |
0.844, -3.774, 12.175, -1.332, | |
1.977, -2.824, 11.819, -1.616, | |
2.192, -2.785, 10.313, 1.320, | |
2.375, -4.197, 9.771, 0.237, | |
1.232, -5.093, 10.234, 0.851, | |
1.414, -6.539, 9.822, 1.816, | |
1.678, -1.527, 12.319, -1.657, | |
3.421, -1.999, 10.036, 1.559, | |
3.605, -4.750, 10.235, 0.831, | |
1.135, -5.078, 11.667, 0.060, | |
1.289, -6.691, 8.416, 1.066, | |
3.219, -0.637, 10.002, 2.111, | |
4.519, 0.024, 9.520, -0.874, | |
4.163, 1.425, 9.021, -1.012, | |
3.190, 1.341, 7.870, -0.250, | |
1.962, 0.991, 8.705, -1.359, | |
2.093, 1.952, 9.871, -0.126, | |
5.119, -0.701, 8.448, 0.995, | |
3.517, 2.147, 10.054, 0.941, | |
2.970, 2.609, 7.259, -0.562, | |
2.107, -0.398, 9.104, -0.038, | |
2.847, 2.618, 5.875, 0.398, | |
1.457, 3.124, 5.519, 0.481, | |
1.316, 3.291, 4.013, -0.187, | |
2.447, 4.155, 3.471, -0.429, | |
3.795, 3.614, 3.934, -0.432, | |
4.956, 4.494, 3.522, -0.788, | |
0.483, 2.217, 6.019, -0.923, | |
0.021, 3.962, 3.636, -0.316, | |
2.311, 5.497, 3.935, -1.917, | |
3.830, 3.522, 5.367, -0.302, | |
5.150, 4.461, 2.116, -1.615 | |
}; | |
static const glm::length_t _1agaSize = sizeof(_1aga) / (4 * sizeof(double)); | |
outTestData.resize(_1agaSize); | |
for(glm::length_t i = 0; i < _1agaSize; ++i) | |
for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) | |
outTestData[i][d] = static_cast<typename vec::value_type>(_1aga[i * 4 + d]); | |
} | |
// All reference values computed separately using symbolic precision | |
// https://github.com/sgrottel/exp-pca-precision | |
// This applies to all functions named: `_1aga::expected*()` | |
GLM_INLINE glm::dmat4 const& expectedCovarData() | |
{ | |
static const glm::dmat4 covar4x4d( | |
9.62434068027210898322, -0.00006657369614512471, -4.29321376568405099761, 0.01879374187452758846, | |
-0.00006657369614512471, 9.62443937868480681175, 5.35113872637944076871, -0.11569259145880574080, | |
-4.29321376568405099761, 5.35113872637944076871, 35.62848549634668415820, 0.90874239254220201545, | |
0.01879374187452758846, -0.11569259145880574080, 0.90874239254220201545, 1.09705971856890904803 | |
); | |
return covar4x4d; | |
} | |
template<glm::length_t D> | |
GLM_INLINE glm::vec<D, double, glm::defaultp> const& expectedEigenvalues(); | |
template<> | |
GLM_INLINE glm::dvec2 const& expectedEigenvalues<2>() | |
{ | |
static const glm::dvec2 evals2( | |
9.62447289926297399961763301774251330057894539467032275382255, | |
9.62430715969394210015560961264297422776572580714373620309355 | |
); | |
return evals2; | |
} | |
template<> | |
GLM_INLINE glm::dvec3 const& expectedEigenvalues<3>() | |
{ | |
static const glm::dvec3 evals3( | |
37.3274494274683425233695502581182052836449738530676689472257, | |
9.62431434161498823505729817436585077939509766554969096873168, | |
7.92550178622027216422369326567668971675332732240052872097887 | |
); | |
return evals3; | |
} | |
template<> | |
GLM_INLINE glm::dvec4 const& expectedEigenvalues<4>() | |
{ | |
static const glm::dvec4 evals4( | |
37.3477389918792213596879452204499702406947817221901007885630, | |
9.62470688921105696017807313860277172063600080413412567999700, | |
7.94017075281634999342344275928070533134615133171969063657713, | |
1.06170863996588365446060186982477896078741484440002343404155 | |
); | |
return evals4; | |
} | |
template<glm::length_t D> | |
GLM_INLINE glm::mat<D, D, double, glm::defaultp> const& expectedEigenvectors(); | |
template<> | |
GLM_INLINE glm::dmat2 const& expectedEigenvectors<2>() | |
{ | |
static const glm::dmat2 evecs2( | |
glm::dvec2( | |
-0.503510847492551904906870957742619139443409162857537237123308, | |
1 | |
), | |
glm::dvec2( | |
1.98605453086051402895741763848787613048533838388005162794043, | |
1 | |
) | |
); | |
return evecs2; | |
} | |
template<> | |
GLM_INLINE glm::dmat3 const& expectedEigenvectors<3>() | |
{ | |
static const glm::dmat3 evecs3( | |
glm::dvec3( | |
-0.154972738414395866005286433008304444294405085038689821864654, | |
0.193161285869815165989799191097521722568079378840201629578695, | |
1 | |
), | |
glm::dvec3( | |
-158565.112775416943154745839952575022429933119522746586149868, | |
-127221.506282351944358932458687410410814983610301927832439675, | |
1 | |
), | |
glm::dvec3( | |
2.52702248596556806145700361724323960543858113426446460406536, | |
-3.14959802931313870497377546974185300816008580801457419079412, | |
1 | |
) | |
); | |
return evecs3; | |
} | |
template<> | |
GLM_INLINE glm::dmat4 const& expectedEigenvectors<4>() | |
{ | |
static const glm::dmat4 evecs4( | |
glm::dvec4( | |
-6.35322390281037045217295803597357821705371650876122113027264, | |
7.91546394153385394517767054617789939529794642646629201212056, | |
41.0301543819240679808549819457450130787045236815736490549663, | |
1 | |
), | |
glm::dvec4( | |
-114.622418941087829756565311692197154422302604224781253861297, | |
-92.2070185807065289900871215218752013659402949497379896153118, | |
0.0155846091025912430932734548933329458404665760587569100867246, | |
1 | |
), | |
glm::dvec4( | |
13.1771887761559019483954743159026938257325190511642952175789, | |
-16.3688257459634877666638419310116970616615816436949741766895, | |
5.17386502341472097227408249233288958059579189051394773143190, | |
1 | |
), | |
glm::dvec4( | |
-0.0192777078948229800494895064532553117703859768210647632969276, | |
0.0348034950916108873629241563077465542944938906271231198634442, | |
-0.0340715609308469289267379681032545422644143611273049912226126, | |
1 | |
) | |
); | |
return evecs4; | |
} | |
} // namespace _1aga | |
// Compute center of gravity | |
template<typename vec> | |
vec computeCenter(const std::vector<vec>& testData) | |
{ | |
double c[4]; | |
std::fill(c, c + vec::length(), 0.0); | |
typename std::vector<vec>::const_iterator e = testData.end(); | |
for(typename std::vector<vec>::const_iterator i = testData.begin(); i != e; ++i) | |
for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) | |
c[d] += static_cast<double>((*i)[d]); | |
vec cVec(0); | |
for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) | |
cVec[d] = static_cast<typename vec::value_type>(c[d] / static_cast<double>(testData.size())); | |
return cVec; | |
} | |
// Test sorting of Eigenvalue&Eigenvector lists. Use exhaustive search. | |
template<glm::length_t D, typename T, glm::qualifier Q> | |
int testEigenvalueSort() | |
{ | |
// Test input data: four arbitrary values | |
static const glm::vec<D, T, Q> refVal( | |
glm::vec<4, T, Q>( | |
10, 8, 6, 4 | |
) | |
); | |
// Test input data: four arbitrary vectors, which can be matched to the above values | |
static const glm::mat<D, D, T, Q> refVec( | |
glm::mat<4, 4, T, Q>( | |
10, 20, 5, 40, | |
8, 16, 4, 32, | |
6, 12, 3, 24, | |
4, 8, 2, 16 | |
) | |
); | |
// Permutations of test input data for exhaustive check, based on `D` (1 <= D <= 4) | |
static const int permutationCount[] = { | |
0, | |
1, | |
2, | |
6, | |
24 | |
}; | |
// The permutations t perform, based on `D` (1 <= D <= 4) | |
static const glm::ivec4 permutation[] = { | |
glm::ivec4(0, 1, 2, 3), | |
glm::ivec4(1, 0, 2, 3), // last for D = 2 | |
glm::ivec4(0, 2, 1, 3), | |
glm::ivec4(1, 2, 0, 3), | |
glm::ivec4(2, 0, 1, 3), | |
glm::ivec4(2, 1, 0, 3), // last for D = 3 | |
glm::ivec4(0, 1, 3, 2), | |
glm::ivec4(1, 0, 3, 2), | |
glm::ivec4(0, 2, 3, 1), | |
glm::ivec4(1, 2, 3, 0), | |
glm::ivec4(2, 0, 3, 1), | |
glm::ivec4(2, 1, 3, 0), | |
glm::ivec4(0, 3, 1, 2), | |
glm::ivec4(1, 3, 0, 2), | |
glm::ivec4(0, 3, 2, 1), | |
glm::ivec4(1, 3, 2, 0), | |
glm::ivec4(2, 3, 0, 1), | |
glm::ivec4(2, 3, 1, 0), | |
glm::ivec4(3, 0, 1, 2), | |
glm::ivec4(3, 1, 0, 2), | |
glm::ivec4(3, 0, 2, 1), | |
glm::ivec4(3, 1, 2, 0), | |
glm::ivec4(3, 2, 0, 1), | |
glm::ivec4(3, 2, 1, 0) // last for D = 4 | |
}; | |
// initial sanity check | |
if(!vectorEpsilonEqual(refVal, refVal, myEpsilon<T>())) | |
return failReport(__LINE__); | |
if(!matrixEpsilonEqual(refVec, refVec, myEpsilon<T>())) | |
return failReport(__LINE__); | |
// Exhaustive search through all permutations | |
for(int p = 0; p < permutationCount[D]; ++p) | |
{ | |
glm::vec<D, T, Q> testVal; | |
glm::mat<D, D, T, Q> testVec; | |
for(int i = 0; i < D; ++i) | |
{ | |
testVal[i] = refVal[permutation[p][i]]; | |
testVec[i] = refVec[permutation[p][i]]; | |
} | |
glm::sortEigenvalues(testVal, testVec); | |
if (!vectorEpsilonEqual(testVal, refVal, myEpsilon<T>())) | |
return failReport(__LINE__); | |
if (!matrixEpsilonEqual(testVec, refVec, myEpsilon<T>())) | |
return failReport(__LINE__); | |
} | |
return 0; | |
} | |
// Test covariance matrix creation functions | |
template<glm::length_t D, typename T, glm::qualifier Q> | |
int testCovar( | |
#if GLM_HAS_CXX11_STL == 1 | |
glm::length_t dataSize, unsigned int randomEngineSeed | |
#else // GLM_HAS_CXX11_STL == 1 | |
glm::length_t, unsigned int | |
#endif // GLM_HAS_CXX11_STL == 1 | |
) | |
{ | |
typedef glm::vec<D, T, Q> vec; | |
typedef glm::mat<D, D, T, Q> mat; | |
// #1: test expected result with fixed data set | |
std::vector<vec> testData; | |
_1aga::fillTestData(testData); | |
// compute center of gravity | |
vec center = computeCenter(testData); | |
mat covarMat = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); | |
if(!matrixEpsilonEqual(covarMat, mat(_1aga::expectedCovarData()), myEpsilon<T>())) | |
{ | |
fprintf(stderr, "Reconstructed covarMat:\n%s\n", glm::to_string(covarMat).c_str()); | |
return failReport(__LINE__); | |
} | |
// #2: test function variant consitency with random data | |
std::default_random_engine rndEng(randomEngineSeed); | |
std::normal_distribution<T> normalDist; | |
testData.resize(dataSize); | |
// some common offset of all data | |
T offset[D]; | |
for(glm::length_t d = 0; d < D; ++d) | |
offset[d] = normalDist(rndEng); | |
// init data | |
for(glm::length_t i = 0; i < dataSize; ++i) | |
for(glm::length_t d = 0; d < D; ++d) | |
testData[i][d] = offset[d] + normalDist(rndEng); | |
center = computeCenter(testData); | |
std::vector<vec> centeredTestData; | |
centeredTestData.reserve(testData.size()); | |
typename std::vector<vec>::const_iterator e = testData.end(); | |
for(typename std::vector<vec>::const_iterator i = testData.begin(); i != e; ++i) | |
centeredTestData.push_back((*i) - center); | |
mat c1 = glm::computeCovarianceMatrix(centeredTestData.data(), centeredTestData.size()); | |
mat c2 = glm::computeCovarianceMatrix<D, T, Q>(centeredTestData.begin(), centeredTestData.end()); | |
mat c3 = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); | |
mat c4 = glm::computeCovarianceMatrix<D, T, Q>(testData.rbegin(), testData.rend(), center); | |
if(!matrixEpsilonEqual(c1, c2, myEpsilon<T>())) | |
return failReport(__LINE__); | |
if(!matrixEpsilonEqual(c1, c3, myEpsilon<T>())) | |
return failReport(__LINE__); | |
if(!matrixEpsilonEqual(c1, c4, myEpsilon<T>())) | |
return failReport(__LINE__); | |
return 0; | |
} | |
// Computes eigenvalues and eigenvectors from well-known covariance matrix | |
template<glm::length_t D, typename T, glm::qualifier Q> | |
int testEigenvectors(T epsilon) | |
{ | |
typedef glm::vec<D, T, Q> vec; | |
typedef glm::mat<D, D, T, Q> mat; | |
// test expected result with fixed data set | |
std::vector<vec> testData; | |
mat covarMat(_1aga::expectedCovarData()); | |
vec eigenvalues; | |
mat eigenvectors; | |
unsigned int c = glm::findEigenvaluesSymReal(covarMat, eigenvalues, eigenvectors); | |
if(c != D) | |
return failReport(__LINE__); | |
glm::sortEigenvalues(eigenvalues, eigenvectors); | |
if (!vectorEpsilonEqual(eigenvalues, vec(_1aga::expectedEigenvalues<D>()), epsilon)) | |
return failReport(__LINE__); | |
for (int i = 0; i < D; ++i) | |
{ | |
vec act = glm::normalize(eigenvectors[i]); | |
vec exp = glm::normalize(_1aga::expectedEigenvectors<D>()[i]); | |
if (!sameSign(act[0], exp[0])) exp = -exp; | |
if (!vectorEpsilonEqual(act, exp, epsilon)) | |
return failReport(__LINE__); | |
} | |
return 0; | |
} | |
// A simple small smoke test: | |
// - a uniformly sampled block | |
// - reconstruct main axes | |
// - check order of eigenvalues equals order of extends of block in direction of main axes | |
int smokeTest() | |
{ | |
using glm::vec3; | |
using glm::mat3; | |
std::vector<vec3> pts; | |
pts.reserve(11 * 15 * 7); | |
for(int x = -5; x <= 5; ++x) | |
for(int y = -7; y <= 7; ++y) | |
for(int z = -3; z <= 3; ++z) | |
pts.push_back(vec3(x, y, z)); | |
mat3 covar = glm::computeCovarianceMatrix(pts.data(), pts.size()); | |
mat3 eVec; | |
vec3 eVal; | |
int eCnt = glm::findEigenvaluesSymReal(covar, eVal, eVec); | |
if(eCnt != 3) | |
return failReport(__LINE__); | |
// sort eVec by decending eVal | |
if(eVal[0] < eVal[1]) | |
{ | |
std::swap(eVal[0], eVal[1]); | |
std::swap(eVec[0], eVec[1]); | |
} | |
if(eVal[0] < eVal[2]) | |
{ | |
std::swap(eVal[0], eVal[2]); | |
std::swap(eVec[0], eVec[2]); | |
} | |
if(eVal[1] < eVal[2]) | |
{ | |
std::swap(eVal[1], eVal[2]); | |
std::swap(eVec[1], eVec[2]); | |
} | |
if(!vectorEpsilonEqual(glm::abs(eVec[0]), vec3(0, 1, 0), myEpsilon<float>())) | |
return failReport(__LINE__); | |
if(!vectorEpsilonEqual(glm::abs(eVec[1]), vec3(1, 0, 0), myEpsilon<float>())) | |
return failReport(__LINE__); | |
if(!vectorEpsilonEqual(glm::abs(eVec[2]), vec3(0, 0, 1), myEpsilon<float>())) | |
return failReport(__LINE__); | |
return 0; | |
} | |
int rndTest(unsigned int randomEngineSeed) | |
{ | |
std::default_random_engine rndEng(randomEngineSeed); | |
std::normal_distribution<double> normalDist; | |
// construct orthonormal system | |
glm::dvec3 x(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); | |
double l = glm::length(x); | |
while(l < myEpsilon<double>()) | |
x = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); | |
x = glm::normalize(x); | |
glm::dvec3 y(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); | |
l = glm::length(y); | |
while(l < myEpsilon<double>()) | |
y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); | |
while(glm::abs(glm::dot(x, y)) < myEpsilon<double>()) | |
{ | |
y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); | |
while(l < myEpsilon<double>()) | |
y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); | |
} | |
y = glm::normalize(y); | |
glm::dvec3 z = glm::normalize(glm::cross(x, y)); | |
y = glm::normalize(glm::cross(z, x)); | |
// generate input point data | |
std::vector<glm::dvec3> ptData; | |
static const int pattern[] = { | |
8, 0, 0, | |
4, 1, 2, | |
0, 2, 0, | |
0, 0, 4 | |
}; | |
glm::dvec3 offset(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); | |
for(int p = 0; p < 4; ++p) | |
for(int xs = 1; xs >= -1; xs -= 2) | |
for(int ys = 1; ys >= -1; ys -= 2) | |
for(int zs = 1; zs >= -1; zs -= 2) | |
ptData.push_back( | |
offset | |
+ x * static_cast<double>(pattern[p * 3 + 0] * xs) | |
+ y * static_cast<double>(pattern[p * 3 + 1] * ys) | |
+ z * static_cast<double>(pattern[p * 3 + 2] * zs)); | |
// perform PCA: | |
glm::dvec3 center = computeCenter(ptData); | |
glm::dmat3 covarMat = glm::computeCovarianceMatrix(ptData.data(), ptData.size(), center); | |
glm::dvec3 evals; | |
glm::dmat3 evecs; | |
int evcnt = glm::findEigenvaluesSymReal(covarMat, evals, evecs); | |
if(evcnt != 3) | |
return failReport(__LINE__); | |
glm::sortEigenvalues(evals, evecs); | |
if (!sameSign(evecs[0][0], x[0])) evecs[0] = -evecs[0]; | |
if(!vectorEpsilonEqual(x, evecs[0], myEpsilon<double>())) | |
return failReport(__LINE__); | |
if (!sameSign(evecs[2][0], y[0])) evecs[2] = -evecs[2]; | |
if (!vectorEpsilonEqual(y, evecs[2], myEpsilon<double>())) | |
return failReport(__LINE__); | |
if (!sameSign(evecs[1][0], z[0])) evecs[1] = -evecs[1]; | |
if (!vectorEpsilonEqual(z, evecs[1], myEpsilon<double>())) | |
return failReport(__LINE__); | |
return 0; | |
} | |
int main() | |
{ | |
int error(0); | |
// A small smoke test to fail early with most problems | |
if(smokeTest()) | |
return failReport(__LINE__); | |
// test sorting utility. | |
if(testEigenvalueSort<2, float, glm::defaultp>() != 0) | |
error = failReport(__LINE__); | |
if(testEigenvalueSort<2, double, glm::defaultp>() != 0) | |
error = failReport(__LINE__); | |
if(testEigenvalueSort<3, float, glm::defaultp>() != 0) | |
error = failReport(__LINE__); | |
if(testEigenvalueSort<3, double, glm::defaultp>() != 0) | |
error = failReport(__LINE__); | |
if(testEigenvalueSort<4, float, glm::defaultp>() != 0) | |
error = failReport(__LINE__); | |
if(testEigenvalueSort<4, double, glm::defaultp>() != 0) | |
error = failReport(__LINE__); | |
if (error != 0) | |
return error; | |
// Note: the random engine uses a fixed seed to create consistent and reproducible test data | |
// test covariance matrix computation from different data sources | |
if(testCovar<2, float, glm::defaultp>(100, 12345) != 0) | |
error = failReport(__LINE__); | |
if(testCovar<2, double, glm::defaultp>(100, 42) != 0) | |
error = failReport(__LINE__); | |
if(testCovar<3, float, glm::defaultp>(100, 2021) != 0) | |
error = failReport(__LINE__); | |
if(testCovar<3, double, glm::defaultp>(100, 815) != 0) | |
error = failReport(__LINE__); | |
if(testCovar<4, float, glm::defaultp>(100, 3141) != 0) | |
error = failReport(__LINE__); | |
if(testCovar<4, double, glm::defaultp>(100, 174) != 0) | |
error = failReport(__LINE__); | |
if (error != 0) | |
return error; | |
// test PCA eigen vector reconstruction | |
// Expected epsilon precision evaluated separately: | |
// https://github.com/sgrottel/exp-pca-precision | |
if(testEigenvectors<2, float, glm::defaultp>(0.002f) != 0) | |
error = failReport(__LINE__); | |
if(testEigenvectors<2, double, glm::defaultp>(0.00000000001) != 0) | |
error = failReport(__LINE__); | |
if(testEigenvectors<3, float, glm::defaultp>(0.00001f) != 0) | |
error = failReport(__LINE__); | |
if(testEigenvectors<3, double, glm::defaultp>(0.0000000001) != 0) | |
error = failReport(__LINE__); | |
if(testEigenvectors<4, float, glm::defaultp>(0.0001f) != 0) | |
error = failReport(__LINE__); | |
if(testEigenvectors<4, double, glm::defaultp>(0.0000001) != 0) | |
error = failReport(__LINE__); | |
if(error != 0) | |
return error; | |
// Final tests with randomized data | |
if(rndTest(12345) != 0) | |
error = failReport(__LINE__); | |
if(rndTest(42) != 0) | |
error = failReport(__LINE__); | |
if (error != 0) | |
return error; | |
return error; | |
} | |