yslan's picture
init
7f51798
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
import torchvision
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from tqdm import tqdm
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion import dist_util, logger
from guided_diffusion.train_util import (calc_average_loss,
log_rec3d_loss_dict,
find_resume_checkpoint)
from torch.optim import AdamW
from ..train_util import TrainLoopBasic, TrainLoop3DRec
import vision_aided_loss
from dnnlib.util import calculate_adaptive_weight
def get_blob_logdir():
# You can change this to be a separate path to save checkpoints to
# a blobstore or some external drive.
return logger.get_dir()
from ..train_util_cvD import TrainLoop3DcvD
# from .nvD import
class TrainLoop3DcvD_canoD(TrainLoop3DcvD):
def __init__(self,
*,
model,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=0.001,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
load_submodule_name='',
ignore_resume_opt=False,
use_amp=False,
**kwargs):
super().__init__(model=model,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
load_submodule_name=load_submodule_name,
ignore_resume_opt=ignore_resume_opt,
use_amp=use_amp, cvD_name='cano_cvD',
**kwargs)
device = dist_util.dev()
# self.canonical_cvD = vision_aided_loss.Discriminator(
# cv_type='clip', loss_type='multilevel_sigmoid_s',
# device=device).to(device)
# self.canonical_cvD.cv_ensemble.requires_grad_(
# False) # Freeze feature extractor
# self._load_and_sync_parameters(model=self.canonical_cvD,
# model_name='cvD')
# self.mp_trainer_canonical_cvD = MixedPrecisionTrainer(
# model=self.canonical_cvD,
# use_fp16=self.use_fp16,
# fp16_scale_growth=fp16_scale_growth,
# model_name='canonical_cvD',
# use_amp=use_amp)
# self.opt_cano_cvD = AdamW(
# self.mp_trainer_canonical_cvD.master_params,
# lr=1e-5, # same as the G
# betas=(0, 0.99),
# eps=1e-8) # dlr in biggan cfg
# if self.use_ddp:
# self.ddp_canonical_cvD = DDP(
# self.canonical_cvD,
# device_ids=[dist_util.dev()],
# output_device=dist_util.dev(),
# broadcast_buffers=False,
# bucket_cap_mb=128,
# find_unused_parameters=False,
# )
# else:
# self.ddp_canonical_cvD = self.canonical_cvD
th.cuda.empty_cache()
def run_step(self, batch, step='g_step'):
# self.forward_backward(batch)
if step == 'g_step_rec':
self.forward_G_rec(batch)
took_step_g_rec = self.mp_trainer_rec.optimize(self.opt)
if took_step_g_rec:
self._update_ema() # g_ema
# elif step == 'g_step_nvs':
# self.forward_G_nvs(batch)
# took_step_g_nvs = self.mp_trainer.optimize(self.opt)
# if took_step_g_nvs:
# self._update_ema() # g_ema
elif step == 'd_step':
self.forward_D(batch)
_ = self.mp_trainer_cvD.optimize(self.opt_cvD)
# _ = self.mp_trainer_canonical_cvD.optimize(self.opt_cano_cvD)
else:
return
self._anneal_lr()
self.log_step()
def run_loop(self):
while (not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps):
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
# batch, cond = next(self.data)
# if batch is None:
batch = next(self.data)
self.run_step(batch, 'g_step_rec')
# batch = next(self.data)
# self.run_step(batch, 'g_step_nvs')
batch = next(self.data)
self.run_step(batch, 'd_step')
if self.step % self.log_interval == 0 and dist_util.get_rank(
) == 0:
out = logger.dumpkvs()
# * log to tensorboard
for k, v in out.items():
self.writer.add_scalar(f'Loss/{k}', v,
self.step + self.resume_step)
if self.step % self.eval_interval == 0 and self.step != 0:
if dist_util.get_rank() == 0:
self.eval_loop()
# self.eval_novelview_loop()
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
if self.step % self.save_interval == 0:
self.save()
self.save(self.mp_trainer_cvD, 'cano_cvD')
# self.save(self.mp_trainer_canonical_cvD, 'cano_cvD')
dist_util.synchronize()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST",
"") and self.step > 0:
return
self.step += 1
if self.step > self.iterations:
print('reached maximum iterations, exiting')
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
self.save(self.mp_trainer_cvD, 'cano_cvD')
# self.save(self.mp_trainer_canonical_cvD, 'cano_cvD')
exit()
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
# self.save(self.mp_trainer_canonical_cvD, 'cvD')
def forward_D(self, batch): # update D
# self.mp_trainer_canonical_cvD.zero_grad()
self.mp_trainer_cvD.zero_grad()
self.rec_model.requires_grad_(False)
# update two D
self.ddp_nvs_cvD.requires_grad_(True)
# self.ddp_canonical_cvD.requires_grad_(True)
batch_size = batch['img'].shape[0]
# * sample a new batch for D training
for i in range(0, batch_size, self.microbatch):
micro = {
k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous()
for k, v in batch.items()
}
with th.autocast(device_type='cuda',
dtype=th.float16,
enabled=self.mp_trainer_cvD.use_amp):
novel_view_c = th.cat([
micro['c'][batch_size // 2:], micro['c'][batch_size // 2:]
])
latent = self.rec_model(img=micro['img_to_encoder'],
behaviour='enc_dec_wo_triplane')
# TODO, optimize with one encoder, and two triplane decoder
cano_pred = self.rec_model(latent=latent,
c=micro['c'],
behaviour='triplane_dec')
# nvs_pred = self.rec_model(latent=latent,
# c=novel_view_c,
# behaviour='triplane_dec')
# d_loss_nvs = self.run_D_Diter(
# real=cano_pred['image_raw'],
# fake=nvs_pred['image_raw'],
# D=self.ddp_cvD) # TODO, add SR for FFHQ
d_loss_cano = self.run_D_Diter(
real=micro['img_to_encoder'],
fake=cano_pred['image_raw'],
D=self.ddp_nvs_cvD) # TODO, add SR for FFHQ
# log_rec3d_loss_dict({'vision_aided_loss/D_nvs': d_loss_nvs})
log_rec3d_loss_dict({'vision_aided_loss/D_cano': d_loss_cano})
self.mp_trainer_cvD.backward(d_loss_cano)
# self.mp_trainer_cvD.backward(d_loss_nvs)
def forward_G_rec(self, batch): # update G
self.mp_trainer_rec.zero_grad()
self.rec_model.requires_grad_(True)
# self.ddp_canonical_cvD.requires_grad_(False)
self.ddp_nvs_cvD.requires_grad_(False)
batch_size = batch['img'].shape[0]
for i in range(0, batch_size, self.microbatch):
micro = {
k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous()
for k, v in batch.items()
}
last_batch = (i + self.microbatch) >= batch_size
with th.autocast(device_type='cuda',
dtype=th.float16,
enabled=self.mp_trainer_rec.use_amp):
pred = self.rec_model(
img=micro['img_to_encoder'], c=micro['c']
) # render novel view for first half of the batch for D loss
target_for_rec = micro
pred_for_rec = pred
if last_batch or not self.use_ddp:
loss, loss_dict = self.loss_class(pred_for_rec,
target_for_rec,
test_mode=False)
else:
with self.rec_model.no_sync(): # type: ignore
loss, loss_dict = self.loss_class(pred_for_rec,
target_for_rec,
test_mode=False)
# add cvD supervision
vision_aided_loss = self.ddp_nvs_cvD(
pred_for_rec['image_raw'],
for_G=True).mean() # [B, 1] shape
last_layer = self.rec_model.module.decoder.triplane_decoder.decoder.net[ # type: ignore
-1].weight # type: ignore
d_weight = calculate_adaptive_weight(
loss, vision_aided_loss, last_layer,
# disc_weight_max=1) * 1
disc_weight_max=0.1) * 0.1
loss += vision_aided_loss * d_weight
loss_dict.update({
'vision_aided_loss/G_rec': vision_aided_loss,
'd_weight': d_weight
})
log_rec3d_loss_dict(loss_dict)
self.mp_trainer_rec.backward(loss) # no nvs cvD loss, following VQ3D
# ! move to other places, add tensorboard
if dist_util.get_rank() == 0 and self.step % 500 == 0:
with th.no_grad():
# gt_vis = th.cat([batch['img'], batch['depth']], dim=-1)
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
gt_depth.min())
# if True:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (
pred_depth.max() - pred_depth.min())
pred_img = pred['image_raw']
gt_img = micro['img']
if 'image_sr' in pred:
pred_img = th.cat(
[self.pool_512(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_512(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_512(pred_depth)
gt_depth = self.pool_512(gt_depth)
gt_vis = th.cat(
[gt_img, gt_depth.repeat_interleave(3, dim=1)],
dim=-1) # TODO, fail to load depth. range [0, 1]
pred_vis = th.cat(
[pred_img,
pred_depth.repeat_interleave(3, dim=1)],
dim=-1) # B, 3, H, W
vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
1, 2, 0).cpu() # ! pred in range[-1, 1]
# vis_grid = torchvision.utils.make_grid(vis) # HWC
vis = vis.numpy() * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
Image.fromarray(vis).save(
f'{logger.get_dir()}/{self.step+self.resume_step}_rec.jpg'
)
print(
'log vis to: ',
f'{logger.get_dir()}/{self.step+self.resume_step}_rec.jpg'
)
def forward_G_nvs(self, batch): # update G
self.mp_trainer_rec.zero_grad()
self.rec_model.requires_grad_(True)
# self.ddp_canonical_cvD.requires_grad_(False)
self.ddp_nvs_cvD.requires_grad_(False) # only use novel view D
batch_size = batch['img'].shape[0]
for i in range(0, batch_size, self.microbatch):
micro = {
k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous()
for k, v in batch.items()
}
with th.autocast(device_type='cuda',
dtype=th.float16,
enabled=self.mp_trainer_cvD.use_amp):
pred_nv = self.rec_model(
img=micro['img_to_encoder'],
c=th.cat([
micro['c'][batch_size // 2:],
micro['c'][:batch_size // 2],
])) # ! render novel views only for D loss
# add cvD supervision
vision_aided_loss = self.ddp_nvs_cvD(
pred_nv['image_raw'], for_G=True).mean() # [B, 1] shape
loss = vision_aided_loss * 0.1
log_rec3d_loss_dict({
'vision_aided_loss/G_nvs':
vision_aided_loss,
})
self.mp_trainer_rec.backward(loss)
# ! move to other places, add tensorboard
if dist_util.get_rank() == 0 and self.step % 500 == 0:
with th.no_grad():
# gt_vis = th.cat([batch['img'], batch['depth']], dim=-1)
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
gt_depth.min())
# if True:
pred_depth = pred_nv['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (
pred_depth.max() - pred_depth.min())
pred_img = pred_nv['image_raw']
gt_img = micro['img']
if 'image_sr' in pred_nv:
pred_img = th.cat(
[self.pool_512(pred_img), pred_nv['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_512(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_512(pred_depth)
gt_depth = self.pool_512(gt_depth)
gt_vis = th.cat(
[gt_img, gt_depth.repeat_interleave(3, dim=1)],
dim=-1) # TODO, fail to load depth. range [0, 1]
pred_vis = th.cat(
[pred_img,
pred_depth.repeat_interleave(3, dim=1)],
dim=-1) # B, 3, H, W
# vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
# 1, 2, 0).cpu() # ! pred in range[-1, 1]
vis = th.cat([gt_vis, pred_vis], dim=-2)
vis = torchvision.utils.make_grid(
vis,
normalize=True,
scale_each=True,
value_range=(-1, 1)).cpu().permute(1, 2, 0) # H W 3
vis = vis.numpy() * 255
vis = vis.clip(0, 255).astype(np.uint8)
# print(vis.shape)
Image.fromarray(vis).save(
f'{logger.get_dir()}/{self.step+self.resume_step}_nvs.jpg'
)
print(
'log vis to: ',
f'{logger.get_dir()}/{self.step+self.resume_step}_nvs.jpg'
)