Spaces:
Running
on
Zero
Running
on
Zero
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary | |
# | |
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
# property and proprietary rights in and to this material, related | |
# documentation and any modifications thereto. Any use, reproduction, | |
# disclosure or distribution of this material and related documentation | |
# without an express license agreement from NVIDIA CORPORATION or | |
# its affiliates is strictly prohibited. | |
"""Discriminator architectures from the paper | |
"Efficient Geometry-aware 3D Generative Adversarial Networks".""" | |
import numpy as np | |
import torch | |
from torch_utils import persistence | |
from torch_utils.ops import upfirdn2d | |
from .networks_stylegan2 import DiscriminatorBlock, MappingNetwork, DiscriminatorEpilogue | |
from pdb import set_trace as st | |
class SingleDiscriminator(torch.nn.Module): | |
def __init__( | |
self, | |
c_dim, # Conditioning label (C) dimensionality. | |
img_resolution, # Input resolution. | |
img_channels, # Number of input color channels. | |
architecture='resnet', # Architecture: 'orig', 'skip', 'resnet'. | |
channel_base=32768, # Overall multiplier for the number of channels. | |
channel_max=512, # Maximum number of channels in any layer. | |
num_fp16_res=4, # Use FP16 for the N highest resolutions. | |
conv_clamp=256, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
cmap_dim=None, # Dimensionality of mapped conditioning label, None = default. | |
sr_upsample_factor=1, # Ignored for SingleDiscriminator | |
block_kwargs={}, # Arguments for DiscriminatorBlock. | |
mapping_kwargs={}, # Arguments for MappingNetwork. | |
epilogue_kwargs={}, # Arguments for DiscriminatorEpilogue. | |
): | |
super().__init__() | |
self.c_dim = c_dim | |
self.img_resolution = img_resolution | |
self.img_resolution_log2 = int(np.log2(img_resolution)) | |
self.img_channels = img_channels | |
self.block_resolutions = [ | |
2**i for i in range(self.img_resolution_log2, 2, -1) | |
] | |
channels_dict = { | |
res: min(channel_base // res, channel_max) | |
for res in self.block_resolutions + [4] | |
} | |
fp16_resolution = max(2**(self.img_resolution_log2 + 1 - num_fp16_res), | |
8) | |
if cmap_dim is None: | |
cmap_dim = channels_dict[4] | |
if c_dim == 0: | |
cmap_dim = 0 | |
common_kwargs = dict(img_channels=img_channels, | |
architecture=architecture, | |
conv_clamp=conv_clamp) | |
cur_layer_idx = 0 | |
for res in self.block_resolutions: | |
in_channels = channels_dict[res] if res < img_resolution else 0 | |
tmp_channels = channels_dict[res] | |
out_channels = channels_dict[res // 2] | |
use_fp16 = (res >= fp16_resolution) | |
block = DiscriminatorBlock(in_channels, | |
tmp_channels, | |
out_channels, | |
resolution=res, | |
first_layer_idx=cur_layer_idx, | |
use_fp16=use_fp16, | |
**block_kwargs, | |
**common_kwargs) | |
setattr(self, f'b{res}', block) | |
cur_layer_idx += block.num_layers | |
if c_dim > 0: | |
self.mapping = MappingNetwork(z_dim=0, | |
c_dim=c_dim, | |
w_dim=cmap_dim, | |
num_ws=None, | |
w_avg_beta=None, | |
**mapping_kwargs) | |
self.b4 = DiscriminatorEpilogue(channels_dict[4], | |
cmap_dim=cmap_dim, | |
resolution=4, | |
**epilogue_kwargs, | |
**common_kwargs) | |
def forward(self, img, c, update_emas=False, **block_kwargs): | |
img = img['image'] | |
_ = update_emas # unused | |
x = None | |
for res in self.block_resolutions: | |
block = getattr(self, f'b{res}') | |
x, img = block(x, img, **block_kwargs) | |
cmap = None | |
if self.c_dim > 0: | |
cmap = self.mapping(None, c) | |
x = self.b4(x, img, cmap) | |
return x | |
def extra_repr(self): | |
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}' | |
#---------------------------------------------------------------------------- | |
def filtered_resizing(image_orig_tensor, size, f, filter_mode='antialiased'): | |
if filter_mode == 'antialiased': | |
ada_filtered_64 = torch.nn.functional.interpolate(image_orig_tensor, | |
size=(size, size), | |
mode='bilinear', | |
align_corners=False, | |
antialias=True) | |
elif filter_mode == 'classic': | |
ada_filtered_64 = upfirdn2d.upsample2d(image_orig_tensor, f, up=2) | |
ada_filtered_64 = torch.nn.functional.interpolate(ada_filtered_64, | |
size=(size * 2 + 2, | |
size * 2 + 2), | |
mode='bilinear', | |
align_corners=False) | |
ada_filtered_64 = upfirdn2d.downsample2d(ada_filtered_64, | |
f, | |
down=2, | |
flip_filter=True, | |
padding=-1) | |
elif filter_mode == 'none': | |
ada_filtered_64 = torch.nn.functional.interpolate(image_orig_tensor, | |
size=(size, size), | |
mode='bilinear', | |
align_corners=False) | |
elif type(filter_mode) == float: | |
assert 0 < filter_mode < 1 | |
filtered = torch.nn.functional.interpolate(image_orig_tensor, | |
size=(size, size), | |
mode='bilinear', | |
align_corners=False, | |
antialias=True) | |
aliased = torch.nn.functional.interpolate(image_orig_tensor, | |
size=(size, size), | |
mode='bilinear', | |
align_corners=False, | |
antialias=False) | |
ada_filtered_64 = (1 - | |
filter_mode) * aliased + (filter_mode) * filtered | |
return ada_filtered_64 | |
#---------------------------------------------------------------------------- | |
class DualDiscriminator(torch.nn.Module): | |
def __init__( | |
self, | |
c_dim, # Conditioning label (C) dimensionality. | |
img_resolution, # Input resolution. | |
img_channels, # Number of input color channels. | |
architecture='resnet', # Architecture: 'orig', 'skip', 'resnet'. | |
channel_base=32768, # Overall multiplier for the number of channels. | |
channel_max=512, # Maximum number of channels in any layer. | |
num_fp16_res=4, # Use FP16 for the N highest resolutions. | |
conv_clamp=256, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
cmap_dim=None, # Dimensionality of mapped conditioning label, None = default. | |
disc_c_noise=0, # Corrupt camera parameters with X std dev of noise before disc. pose conditioning. | |
block_kwargs={}, # Arguments for DiscriminatorBlock. | |
mapping_kwargs={}, # Arguments for MappingNetwork. | |
epilogue_kwargs={}, # Arguments for DiscriminatorEpilogue. | |
): | |
super().__init__() | |
# img_channels *= 2 | |
if img_channels == 3: | |
img_channels *= 2 | |
self.c_dim = c_dim | |
self.img_resolution = img_resolution | |
self.img_resolution_log2 = int(np.log2(img_resolution)) | |
self.img_channels = img_channels | |
self.block_resolutions = [ | |
2**i for i in range(self.img_resolution_log2, 2, -1) | |
] | |
channels_dict = { | |
res: min(channel_base // res, channel_max) | |
for res in self.block_resolutions + [4] | |
} | |
fp16_resolution = max(2**(self.img_resolution_log2 + 1 - num_fp16_res), | |
8) | |
if cmap_dim is None: | |
cmap_dim = channels_dict[4] | |
if c_dim == 0: | |
cmap_dim = 0 | |
common_kwargs = dict(img_channels=img_channels, | |
architecture=architecture, | |
conv_clamp=conv_clamp) | |
cur_layer_idx = 0 | |
for res in self.block_resolutions: | |
in_channels = channels_dict[res] if res < img_resolution else 0 | |
tmp_channels = channels_dict[res] | |
out_channels = channels_dict[res // 2] | |
use_fp16 = (res >= fp16_resolution) | |
block = DiscriminatorBlock(in_channels, | |
tmp_channels, | |
out_channels, | |
resolution=res, | |
first_layer_idx=cur_layer_idx, | |
use_fp16=use_fp16, | |
**block_kwargs, | |
**common_kwargs) | |
setattr(self, f'b{res}', block) | |
cur_layer_idx += block.num_layers | |
if c_dim > 0: | |
self.mapping = MappingNetwork(z_dim=0, | |
c_dim=c_dim, | |
w_dim=cmap_dim, | |
num_ws=None, | |
w_avg_beta=None, | |
**mapping_kwargs) | |
self.b4 = DiscriminatorEpilogue(channels_dict[4], | |
cmap_dim=cmap_dim, | |
resolution=4, | |
**epilogue_kwargs, | |
**common_kwargs) | |
self.register_buffer('resample_filter', | |
upfirdn2d.setup_filter([1, 3, 3, 1])) | |
self.disc_c_noise = disc_c_noise | |
def forward(self, img, c, update_emas=False, **block_kwargs): | |
image_raw = filtered_resizing(img['image_raw'], | |
# size=img['image'].shape[-1], | |
size=img['image_sr'].shape[-1], | |
f=self.resample_filter) | |
# img = torch.cat([img['image'], image_raw], 1) | |
img = torch.cat([img['image_sr'], image_raw], 1) | |
_ = update_emas # unused | |
x = None | |
for res in self.block_resolutions: | |
block = getattr(self, f'b{res}') | |
x, img = block(x, img, **block_kwargs) | |
cmap = None | |
if self.c_dim > 0: | |
if self.disc_c_noise > 0: | |
c += torch.randn_like(c) * c.std(0) * self.disc_c_noise | |
cmap = self.mapping(None, c) | |
x = self.b4(x, img, cmap) | |
return x | |
def extra_repr(self): | |
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}' | |
class GeoDualDiscriminator(DualDiscriminator): | |
def __init__(self, c_dim, img_resolution, img_channels, architecture='resnet', channel_base=32768, channel_max=512, num_fp16_res=4, conv_clamp=256, cmap_dim=None, disc_c_noise=0, block_kwargs={}, mapping_kwargs={}, epilogue_kwargs={}, normal_condition=False): | |
super().__init__(c_dim, img_resolution, img_channels, architecture, channel_base, channel_max, num_fp16_res, conv_clamp, cmap_dim, disc_c_noise, block_kwargs, mapping_kwargs, epilogue_kwargs) | |
self.normal_condition = normal_condition | |
def forward(self, img, c, update_emas=False, **block_kwargs): | |
image= img['image'] | |
image_raw = filtered_resizing(img['image_raw'], | |
size=img['image'].shape[-1], | |
f=self.resample_filter) | |
D_input_img = torch.cat([image, image_raw], 1) | |
image_depth = filtered_resizing(img['image_depth'], size=img['image'].shape[-1], f=self.resample_filter) | |
if self.normal_condition and 'normal' in img: | |
image_normal = filtered_resizing(img['normal'], size=img['image'].shape[-1], f=self.resample_filter) | |
D_input_img = torch.cat([D_input_img, image_depth, image_normal], 1) | |
else: | |
D_input_img = torch.cat([D_input_img, image_depth], 1) | |
img = D_input_img | |
_ = update_emas # unused | |
x = None | |
for res in self.block_resolutions: | |
block = getattr(self, f'b{res}') | |
x, img = block(x, img, **block_kwargs) | |
cmap = None | |
if self.c_dim > 0: | |
if self.disc_c_noise > 0: | |
c += torch.randn_like(c) * c.std(0) * self.disc_c_noise | |
cmap = self.mapping(None, c) | |
x = self.b4(x, img, cmap) | |
return x | |
#---------------------------------------------------------------------------- | |
class DummyDualDiscriminator(torch.nn.Module): | |
def __init__( | |
self, | |
c_dim, # Conditioning label (C) dimensionality. | |
img_resolution, # Input resolution. | |
img_channels, # Number of input color channels. | |
architecture='resnet', # Architecture: 'orig', 'skip', 'resnet'. | |
channel_base=32768, # Overall multiplier for the number of channels. | |
channel_max=512, # Maximum number of channels in any layer. | |
num_fp16_res=4, # Use FP16 for the N highest resolutions. | |
conv_clamp=256, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
cmap_dim=None, # Dimensionality of mapped conditioning label, None = default. | |
block_kwargs={}, # Arguments for DiscriminatorBlock. | |
mapping_kwargs={}, # Arguments for MappingNetwork. | |
epilogue_kwargs={}, # Arguments for DiscriminatorEpilogue. | |
): | |
super().__init__() | |
img_channels *= 2 | |
self.c_dim = c_dim | |
self.img_resolution = img_resolution | |
self.img_resolution_log2 = int(np.log2(img_resolution)) | |
self.img_channels = img_channels | |
self.block_resolutions = [ | |
2**i for i in range(self.img_resolution_log2, 2, -1) | |
] | |
channels_dict = { | |
res: min(channel_base // res, channel_max) | |
for res in self.block_resolutions + [4] | |
} | |
fp16_resolution = max(2**(self.img_resolution_log2 + 1 - num_fp16_res), | |
8) | |
if cmap_dim is None: | |
cmap_dim = channels_dict[4] | |
if c_dim == 0: | |
cmap_dim = 0 | |
common_kwargs = dict(img_channels=img_channels, | |
architecture=architecture, | |
conv_clamp=conv_clamp) | |
cur_layer_idx = 0 | |
for res in self.block_resolutions: | |
in_channels = channels_dict[res] if res < img_resolution else 0 | |
tmp_channels = channels_dict[res] | |
out_channels = channels_dict[res // 2] | |
use_fp16 = (res >= fp16_resolution) | |
block = DiscriminatorBlock(in_channels, | |
tmp_channels, | |
out_channels, | |
resolution=res, | |
first_layer_idx=cur_layer_idx, | |
use_fp16=use_fp16, | |
**block_kwargs, | |
**common_kwargs) | |
setattr(self, f'b{res}', block) | |
cur_layer_idx += block.num_layers | |
if c_dim > 0: | |
self.mapping = MappingNetwork(z_dim=0, | |
c_dim=c_dim, | |
w_dim=cmap_dim, | |
num_ws=None, | |
w_avg_beta=None, | |
**mapping_kwargs) | |
self.b4 = DiscriminatorEpilogue(channels_dict[4], | |
cmap_dim=cmap_dim, | |
resolution=4, | |
**epilogue_kwargs, | |
**common_kwargs) | |
self.register_buffer('resample_filter', | |
upfirdn2d.setup_filter([1, 3, 3, 1])) | |
self.raw_fade = 1 | |
def forward(self, img, c, update_emas=False, **block_kwargs): | |
self.raw_fade = max(0, self.raw_fade - 1 / (500000 / 32)) | |
image_raw = filtered_resizing(img['image_raw'], | |
size=img['image'].shape[-1], | |
f=self.resample_filter) * self.raw_fade | |
img = torch.cat([img['image'], image_raw], 1) | |
_ = update_emas # unused | |
x = None | |
for res in self.block_resolutions: | |
block = getattr(self, f'b{res}') | |
x, img = block(x, img, **block_kwargs) | |
cmap = None | |
if self.c_dim > 0: | |
cmap = self.mapping(None, c) | |
x = self.b4(x, img, cmap) | |
return x | |
def extra_repr(self): | |
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}' | |
#---------------------------------------------------------------------------- | |
# panohead | |
# Tri-discriminator: upsampled image, super-resolved image, and segmentation mask | |
# V2: first concatenate imgs and seg mask, using only one conv block | |
class MaskDualDiscriminatorV2(torch.nn.Module): | |
def __init__(self, | |
c_dim, # Conditioning label (C) dimensionality. | |
img_resolution, # Input resolution. | |
img_channels, # Number of input color channels. | |
seg_resolution, # Input resolution. | |
seg_channels, # Number of input color channels. | |
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'. | |
channel_base = 32768, # Overall multiplier for the number of channels. | |
channel_max = 512, # Maximum number of channels in any layer. | |
num_fp16_res = 4, # Use FP16 for the N highest resolutions. | |
conv_clamp = 256, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
cmap_dim = None, # Dimensionality of mapped conditioning label, None = default. | |
disc_c_noise = 0, # Corrupt camera parameters with X std dev of noise before disc. pose conditioning. | |
block_kwargs = {}, # Arguments for DiscriminatorBlock. | |
mapping_kwargs = {}, # Arguments for MappingNetwork. | |
epilogue_kwargs = {}, # Arguments for DiscriminatorEpilogue. | |
): | |
super().__init__() | |
img_channels = img_channels * 2 + seg_channels | |
self.c_dim = c_dim | |
self.img_resolution = img_resolution | |
self.img_resolution_log2 = int(np.log2(img_resolution)) | |
self.img_channels = img_channels | |
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)] | |
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]} | |
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8) | |
if cmap_dim is None: | |
cmap_dim = channels_dict[4] | |
if c_dim == 0: | |
cmap_dim = 0 | |
common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp) | |
cur_layer_idx = 0 | |
for res in self.block_resolutions: | |
in_channels = channels_dict[res] if res < img_resolution else 0 | |
tmp_channels = channels_dict[res] | |
out_channels = channels_dict[res // 2] | |
use_fp16 = (res >= fp16_resolution) | |
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res, | |
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs) | |
setattr(self, f'b{res}', block) | |
cur_layer_idx += block.num_layers | |
if c_dim > 0: | |
self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs) | |
self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs) | |
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1])) | |
self.disc_c_noise = disc_c_noise | |
def forward(self, img, c, update_emas=False, **block_kwargs): | |
image_raw = filtered_resizing(img['image_raw'], size=img['image'].shape[-1], f=self.resample_filter) | |
seg = filtered_resizing(img['image_mask'], size=img['image'].shape[-1], f=self.resample_filter) | |
seg = 2 * seg - 1 # normalize to [-1,1] | |
img = torch.cat([img['image'], image_raw, seg], 1) | |
_ = update_emas # unused | |
x = None | |
for res in self.block_resolutions: | |
block = getattr(self, f'b{res}') | |
x, img = block(x, img, **block_kwargs) | |
cmap = None | |
if self.c_dim > 0: | |
if self.disc_c_noise > 0: c += torch.randn_like(c) * c.std(0) * self.disc_c_noise | |
cmap = self.mapping(None, c) | |
x = self.b4(x, img, cmap) | |
return x | |
def extra_repr(self): | |
return ' '.join([ | |
f'c_dim={self.c_dim:d},', | |
f'img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d},', | |
f'seg_resolution={self.seg_resolution:d}, seg_channels={self.seg_channels:d}']) |