yslan's picture
init
7f51798
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import torch
import numpy as np
import os
from . import Geometry
from .dmtet_utils import get_center_boundary_index
import torch.nn.functional as F
###############################################################################
# DMTet utility functions
###############################################################################
def create_mt_variable(device):
triangle_table = torch.tensor(
[
[-1, -1, -1, -1, -1, -1],
[1, 0, 2, -1, -1, -1],
[4, 0, 3, -1, -1, -1],
[1, 4, 2, 1, 3, 4],
[3, 1, 5, -1, -1, -1],
[2, 3, 0, 2, 5, 3],
[1, 4, 0, 1, 5, 4],
[4, 2, 5, -1, -1, -1],
[4, 5, 2, -1, -1, -1],
[4, 1, 0, 4, 5, 1],
[3, 2, 0, 3, 5, 2],
[1, 3, 5, -1, -1, -1],
[4, 1, 2, 4, 3, 1],
[3, 0, 4, -1, -1, -1],
[2, 0, 1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1]
], dtype=torch.long, device=device)
num_triangles_table = torch.tensor([0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long, device=device)
base_tet_edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=device)
v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=device))
return triangle_table, num_triangles_table, base_tet_edges, v_id
def sort_edges(edges_ex2):
with torch.no_grad():
order = (edges_ex2[:, 0] > edges_ex2[:, 1]).long()
order = order.unsqueeze(dim=1)
a = torch.gather(input=edges_ex2, index=order, dim=1)
b = torch.gather(input=edges_ex2, index=1 - order, dim=1)
return torch.stack([a, b], -1)
###############################################################################
# marching tetrahedrons (differentiable)
###############################################################################
def marching_tets(pos_nx3, sdf_n, tet_fx4, triangle_table, num_triangles_table, base_tet_edges, v_id):
with torch.no_grad():
occ_n = sdf_n > 0
occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4)
occ_sum = torch.sum(occ_fx4, -1)
valid_tets = (occ_sum > 0) & (occ_sum < 4)
occ_sum = occ_sum[valid_tets]
# find all vertices
all_edges = tet_fx4[valid_tets][:, base_tet_edges].reshape(-1, 2)
all_edges = sort_edges(all_edges)
unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)
unique_edges = unique_edges.long()
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=sdf_n.device) * -1
mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=sdf_n.device)
idx_map = mapping[idx_map] # map edges to verts
interp_v = unique_edges[mask_edges] # .long()
edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3)
edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1)
edges_to_interp_sdf[:, -1] *= -1
denominator = edges_to_interp_sdf.sum(1, keepdim=True)
edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator
verts = (edges_to_interp * edges_to_interp_sdf).sum(1)
idx_map = idx_map.reshape(-1, 6)
tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1)
num_triangles = num_triangles_table[tetindex]
# Generate triangle indices
faces = torch.cat(
(
torch.gather(
input=idx_map[num_triangles == 1], dim=1,
index=triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3),
torch.gather(
input=idx_map[num_triangles == 2], dim=1,
index=triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3),
), dim=0)
return verts, faces
def create_tetmesh_variables(device='cuda'):
tet_table = torch.tensor(
[[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 4, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 0, 8, 7, 0, 5, 8, 7, 0, 5, 6, 8],
[2, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 0, 9, 7, 0, 4, 9, 7, 0, 4, 6, 9],
[2, 1, 9, 5, 1, 4, 9, 5, 1, 4, 8, 9],
[6, 0, 1, 2, 6, 1, 2, 8, 6, 8, 2, 9],
[3, 6, 8, 9, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 9, 8, 0, 4, 9, 8, 0, 4, 5, 9],
[3, 1, 9, 6, 1, 4, 9, 6, 1, 4, 7, 9],
[5, 0, 1, 3, 5, 1, 3, 7, 5, 7, 3, 9],
[3, 2, 8, 6, 2, 5, 8, 6, 2, 5, 7, 8],
[4, 0, 2, 3, 4, 2, 3, 7, 4, 7, 3, 8],
[4, 1, 2, 3, 4, 2, 3, 5, 4, 5, 3, 6],
[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], dtype=torch.long, device=device)
num_tets_table = torch.tensor([0, 1, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 0], dtype=torch.long, device=device)
return tet_table, num_tets_table
def marching_tets_tetmesh(
pos_nx3, sdf_n, tet_fx4, triangle_table, num_triangles_table, base_tet_edges, v_id,
return_tet_mesh=False, ori_v=None, num_tets_table=None, tet_table=None):
with torch.no_grad():
occ_n = sdf_n > 0
occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4)
occ_sum = torch.sum(occ_fx4, -1)
valid_tets = (occ_sum > 0) & (occ_sum < 4)
occ_sum = occ_sum[valid_tets]
# find all vertices
all_edges = tet_fx4[valid_tets][:, base_tet_edges].reshape(-1, 2)
all_edges = sort_edges(all_edges)
unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)
unique_edges = unique_edges.long()
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=sdf_n.device) * -1
mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=sdf_n.device)
idx_map = mapping[idx_map] # map edges to verts
interp_v = unique_edges[mask_edges] # .long()
edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3)
edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1)
edges_to_interp_sdf[:, -1] *= -1
denominator = edges_to_interp_sdf.sum(1, keepdim=True)
edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator
verts = (edges_to_interp * edges_to_interp_sdf).sum(1)
idx_map = idx_map.reshape(-1, 6)
tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1)
num_triangles = num_triangles_table[tetindex]
# Generate triangle indices
faces = torch.cat(
(
torch.gather(
input=idx_map[num_triangles == 1], dim=1,
index=triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3),
torch.gather(
input=idx_map[num_triangles == 2], dim=1,
index=triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3),
), dim=0)
if not return_tet_mesh:
return verts, faces
occupied_verts = ori_v[occ_n]
mapping = torch.ones((pos_nx3.shape[0]), dtype=torch.long, device="cuda") * -1
mapping[occ_n] = torch.arange(occupied_verts.shape[0], device="cuda")
tet_fx4 = mapping[tet_fx4.reshape(-1)].reshape((-1, 4))
idx_map = torch.cat([tet_fx4[valid_tets] + verts.shape[0], idx_map], -1) # t x 10
tet_verts = torch.cat([verts, occupied_verts], 0)
num_tets = num_tets_table[tetindex]
tets = torch.cat(
(
torch.gather(input=idx_map[num_tets == 1], dim=1, index=tet_table[tetindex[num_tets == 1]][:, :4]).reshape(
-1,
4),
torch.gather(input=idx_map[num_tets == 3], dim=1, index=tet_table[tetindex[num_tets == 3]][:, :12]).reshape(
-1,
4),
), dim=0)
# add fully occupied tets
fully_occupied = occ_fx4.sum(-1) == 4
tet_fully_occupied = tet_fx4[fully_occupied] + verts.shape[0]
tets = torch.cat([tets, tet_fully_occupied])
return verts, faces, tet_verts, tets
###############################################################################
# Compact tet grid
###############################################################################
def compact_tets(pos_nx3, sdf_n, tet_fx4):
with torch.no_grad():
# Find surface tets
occ_n = sdf_n > 0
occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4)
occ_sum = torch.sum(occ_fx4, -1)
valid_tets = (occ_sum > 0) & (occ_sum < 4) # one value per tet, these are the surface tets
valid_vtx = tet_fx4[valid_tets].reshape(-1)
unique_vtx, idx_map = torch.unique(valid_vtx, dim=0, return_inverse=True)
new_pos = pos_nx3[unique_vtx]
new_sdf = sdf_n[unique_vtx]
new_tets = idx_map.reshape(-1, 4)
return new_pos, new_sdf, new_tets
###############################################################################
# Subdivide volume
###############################################################################
def batch_subdivide_volume(tet_pos_bxnx3, tet_bxfx4, grid_sdf):
device = tet_pos_bxnx3.device
# get new verts
tet_fx4 = tet_bxfx4[0]
edges = [0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3]
all_edges = tet_fx4[:, edges].reshape(-1, 2)
all_edges = sort_edges(all_edges)
unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)
idx_map = idx_map + tet_pos_bxnx3.shape[1]
all_values = torch.cat([tet_pos_bxnx3, grid_sdf], -1)
mid_points_pos = all_values[:, unique_edges.reshape(-1)].reshape(
all_values.shape[0], -1, 2,
all_values.shape[-1]).mean(2)
new_v = torch.cat([all_values, mid_points_pos], 1)
new_v, new_sdf = new_v[..., :3], new_v[..., 3]
# get new tets
idx_a, idx_b, idx_c, idx_d = tet_fx4[:, 0], tet_fx4[:, 1], tet_fx4[:, 2], tet_fx4[:, 3]
idx_ab = idx_map[0::6]
idx_ac = idx_map[1::6]
idx_ad = idx_map[2::6]
idx_bc = idx_map[3::6]
idx_bd = idx_map[4::6]
idx_cd = idx_map[5::6]
tet_1 = torch.stack([idx_a, idx_ab, idx_ac, idx_ad], dim=1)
tet_2 = torch.stack([idx_b, idx_bc, idx_ab, idx_bd], dim=1)
tet_3 = torch.stack([idx_c, idx_ac, idx_bc, idx_cd], dim=1)
tet_4 = torch.stack([idx_d, idx_ad, idx_cd, idx_bd], dim=1)
tet_5 = torch.stack([idx_ab, idx_ac, idx_ad, idx_bd], dim=1)
tet_6 = torch.stack([idx_ab, idx_ac, idx_bd, idx_bc], dim=1)
tet_7 = torch.stack([idx_cd, idx_ac, idx_bd, idx_ad], dim=1)
tet_8 = torch.stack([idx_cd, idx_ac, idx_bc, idx_bd], dim=1)
tet_np = torch.cat([tet_1, tet_2, tet_3, tet_4, tet_5, tet_6, tet_7, tet_8], dim=0)
tet_np = tet_np.reshape(1, -1, 4).expand(tet_pos_bxnx3.shape[0], -1, -1)
tet = tet_np.long().to(device)
return new_v, tet, new_sdf
###############################################################################
# Adjacency
###############################################################################
def tet_to_tet_adj_sparse(tet_tx4):
# include self connection!!!!!!!!!!!!!!!!!!!
with torch.no_grad():
t = tet_tx4.shape[0]
device = tet_tx4.device
idx_array = torch.LongTensor(
[0, 1, 2,
1, 0, 3,
2, 3, 0,
3, 2, 1]).to(device).reshape(4, 3).unsqueeze(0).expand(t, -1, -1) # (t, 4, 3)
# get all faces
all_faces = torch.gather(input=tet_tx4.unsqueeze(1).expand(-1, 4, -1), index=idx_array, dim=-1).reshape(
-1,
3) # (tx4, 3)
all_faces_tet_idx = torch.arange(t, device=device).unsqueeze(-1).expand(-1, 4).reshape(-1)
# sort and group
all_faces_sorted, _ = torch.sort(all_faces, dim=1)
all_faces_unique, inverse_indices, counts = torch.unique(
all_faces_sorted, dim=0, return_counts=True,
return_inverse=True)
tet_face_fx3 = all_faces_unique[counts == 2]
counts = counts[inverse_indices] # tx4
valid = (counts == 2)
group = inverse_indices[valid]
# print (inverse_indices.shape, group.shape, all_faces_tet_idx.shape)
_, indices = torch.sort(group)
all_faces_tet_idx_grouped = all_faces_tet_idx[valid][indices]
tet_face_tetidx_fx2 = torch.stack([all_faces_tet_idx_grouped[::2], all_faces_tet_idx_grouped[1::2]], dim=-1)
tet_adj_idx = torch.cat([tet_face_tetidx_fx2, torch.flip(tet_face_tetidx_fx2, [1])])
adj_self = torch.arange(t, device=tet_tx4.device)
adj_self = torch.stack([adj_self, adj_self], -1)
tet_adj_idx = torch.cat([tet_adj_idx, adj_self])
tet_adj_idx = torch.unique(tet_adj_idx, dim=0)
values = torch.ones(
tet_adj_idx.shape[0], device=tet_tx4.device).float()
adj_sparse = torch.sparse.FloatTensor(
tet_adj_idx.t(), values, torch.Size([t, t]))
# normalization
neighbor_num = 1.0 / torch.sparse.sum(
adj_sparse, dim=1).to_dense()
values = torch.index_select(neighbor_num, 0, tet_adj_idx[:, 0])
adj_sparse = torch.sparse.FloatTensor(
tet_adj_idx.t(), values, torch.Size([t, t]))
return adj_sparse
###############################################################################
# Compact grid
###############################################################################
def get_tet_bxfx4x3(bxnxz, bxfx4):
n_batch, z = bxnxz.shape[0], bxnxz.shape[2]
gather_input = bxnxz.unsqueeze(2).expand(
n_batch, bxnxz.shape[1], 4, z)
gather_index = bxfx4.unsqueeze(-1).expand(
n_batch, bxfx4.shape[1], 4, z).long()
tet_bxfx4xz = torch.gather(
input=gather_input, dim=1, index=gather_index)
return tet_bxfx4xz
def shrink_grid(tet_pos_bxnx3, tet_bxfx4, grid_sdf):
with torch.no_grad():
assert tet_pos_bxnx3.shape[0] == 1
occ = grid_sdf[0] > 0
occ_sum = get_tet_bxfx4x3(occ.unsqueeze(0).unsqueeze(-1), tet_bxfx4).reshape(-1, 4).sum(-1)
mask = (occ_sum > 0) & (occ_sum < 4)
# build connectivity graph
adj_matrix = tet_to_tet_adj_sparse(tet_bxfx4[0])
mask = mask.float().unsqueeze(-1)
# Include a one ring of neighbors
for i in range(1):
mask = torch.sparse.mm(adj_matrix, mask)
mask = mask.squeeze(-1) > 0
mapping = torch.zeros((tet_pos_bxnx3.shape[1]), device=tet_pos_bxnx3.device, dtype=torch.long)
new_tet_bxfx4 = tet_bxfx4[:, mask].long()
selected_verts_idx = torch.unique(new_tet_bxfx4)
new_tet_pos_bxnx3 = tet_pos_bxnx3[:, selected_verts_idx]
mapping[selected_verts_idx] = torch.arange(selected_verts_idx.shape[0], device=tet_pos_bxnx3.device)
new_tet_bxfx4 = mapping[new_tet_bxfx4.reshape(-1)].reshape(new_tet_bxfx4.shape)
new_grid_sdf = grid_sdf[:, selected_verts_idx]
return new_tet_pos_bxnx3, new_tet_bxfx4, new_grid_sdf
###############################################################################
# Regularizer
###############################################################################
def sdf_reg_loss(sdf, all_edges):
sdf_f1x6x2 = sdf[all_edges.reshape(-1)].reshape(-1, 2)
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
sdf_f1x6x2 = sdf_f1x6x2[mask]
sdf_diff = torch.nn.functional.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 0],
(sdf_f1x6x2[..., 1] > 0).float()) + \
torch.nn.functional.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 1],
(sdf_f1x6x2[..., 0] > 0).float())
return sdf_diff
def sdf_reg_loss_batch(sdf, all_edges):
sdf_f1x6x2 = sdf[:, all_edges.reshape(-1)].reshape(sdf.shape[0], -1, 2)
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
sdf_f1x6x2 = sdf_f1x6x2[mask]
sdf_diff = torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()) + \
torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float())
return sdf_diff
###############################################################################
# Geometry interface
###############################################################################
class DMTetGeometry(Geometry):
def __init__(
self, grid_res=64, scale=2.0, device='cuda', renderer=None,
render_type='neural_render', args=None):
super(DMTetGeometry, self).__init__()
self.grid_res = grid_res
self.device = device
self.args = args
tets = np.load('data/tets/%d_compress.npz' % (grid_res))
self.verts = torch.from_numpy(tets['vertices']).float().to(self.device)
# Make sure the tet is zero-centered and length is equal to 1
length = self.verts.max(dim=0)[0] - self.verts.min(dim=0)[0]
length = length.max()
mid = (self.verts.max(dim=0)[0] + self.verts.min(dim=0)[0]) / 2.0
self.verts = (self.verts - mid.unsqueeze(dim=0)) / length
if isinstance(scale, list):
self.verts[:, 0] = self.verts[:, 0] * scale[0]
self.verts[:, 1] = self.verts[:, 1] * scale[1]
self.verts[:, 2] = self.verts[:, 2] * scale[1]
else:
self.verts = self.verts * scale
self.indices = torch.from_numpy(tets['tets']).long().to(self.device)
self.triangle_table, self.num_triangles_table, self.base_tet_edges, self.v_id = create_mt_variable(self.device)
self.tet_table, self.num_tets_table = create_tetmesh_variables(self.device)
# Parameters for regularization computation
edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=self.device)
all_edges = self.indices[:, edges].reshape(-1, 2)
all_edges_sorted = torch.sort(all_edges, dim=1)[0]
self.all_edges = torch.unique(all_edges_sorted, dim=0)
# Parameters used for fix boundary sdf
self.center_indices, self.boundary_indices = get_center_boundary_index(self.verts)
self.renderer = renderer
self.render_type = render_type
def getAABB(self):
return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values
def get_mesh(self, v_deformed_nx3, sdf_n, with_uv=False, indices=None):
if indices is None:
indices = self.indices
verts, faces = marching_tets(
v_deformed_nx3, sdf_n, indices, self.triangle_table,
self.num_triangles_table, self.base_tet_edges, self.v_id)
faces = torch.cat(
[faces[:, 0:1],
faces[:, 2:3],
faces[:, 1:2], ], dim=-1)
return verts, faces
def get_tet_mesh(self, v_deformed_nx3, sdf_n, with_uv=False, indices=None):
if indices is None:
indices = self.indices
verts, faces, tet_verts, tets = marching_tets_tetmesh(
v_deformed_nx3, sdf_n, indices, self.triangle_table,
self.num_triangles_table, self.base_tet_edges, self.v_id, return_tet_mesh=True,
num_tets_table=self.num_tets_table, tet_table=self.tet_table, ori_v=v_deformed_nx3)
faces = torch.cat(
[faces[:, 0:1],
faces[:, 2:3],
faces[:, 1:2], ], dim=-1)
return verts, faces, tet_verts, tets
def render_mesh(self, mesh_v_nx3, mesh_f_fx3, camera_mv_bx4x4, resolution=256, hierarchical_mask=False):
return_value = dict()
if self.render_type == 'neural_render':
tex_pos, mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth = self.renderer.render_mesh(
mesh_v_nx3.unsqueeze(dim=0),
mesh_f_fx3.int(),
camera_mv_bx4x4,
mesh_v_nx3.unsqueeze(dim=0),
resolution=resolution,
device=self.device,
hierarchical_mask=hierarchical_mask
)
return_value['tex_pos'] = tex_pos
return_value['mask'] = mask
return_value['hard_mask'] = hard_mask
return_value['rast'] = rast
return_value['v_pos_clip'] = v_pos_clip
return_value['mask_pyramid'] = mask_pyramid
return_value['depth'] = depth
else:
raise NotImplementedError
return return_value
def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256):
# Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1
v_list = []
f_list = []
n_batch = v_deformed_bxnx3.shape[0]
all_render_output = []
for i_batch in range(n_batch):
verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch])
v_list.append(verts_nx3)
f_list.append(faces_fx3)
render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution)
all_render_output.append(render_output)
# Concatenate all render output
return_keys = all_render_output[0].keys()
return_value = dict()
for k in return_keys:
value = [v[k] for v in all_render_output]
return_value[k] = value
# We can do concatenation outside of the render
return return_value