Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from pdb import set_trace as st | |
from torch import nn | |
from .model_irse import Backbone | |
from .paths_config import model_paths | |
class IDLoss(nn.Module): | |
def __init__(self, device): | |
# super(IDLoss, self).__init__() | |
super().__init__() | |
print('Loading ResNet ArcFace') | |
self.facenet = Backbone(input_size=112, | |
num_layers=50, | |
drop_ratio=0.6, | |
mode='ir_se').to(device) | |
# self.facenet.load_state_dict(torch.load(model_paths['ir_se50'])) | |
try: | |
face_net_model = torch.load(model_paths['ir_se50'], | |
map_location=device) | |
except Exception as e: | |
face_net_model = torch.load(model_paths['ir_se50_hwc'], | |
map_location=device) | |
self.facenet.load_state_dict(face_net_model) | |
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) | |
self.facenet.eval() | |
def extract_feats(self, x): | |
x = x[:, :, 35:223, 32:220] # Crop interesting region | |
x = self.face_pool(x) | |
x_feats = self.facenet(x) | |
return x_feats | |
def forward(self, y_hat, y, x): | |
n_samples, _, H, W = x.shape | |
assert H == W == 256, 'idloss needs 256*256 input images' | |
x_feats = self.extract_feats(x) | |
y_feats = self.extract_feats(y) # Otherwise use the feature from there | |
y_hat_feats = self.extract_feats(y_hat) | |
y_feats = y_feats.detach() | |
loss = 0 | |
sim_improvement = 0 | |
id_logs = [] | |
count = 0 | |
for i in range(n_samples): | |
diff_target = y_hat_feats[i].dot(y_feats[i]) | |
diff_input = y_hat_feats[i].dot(x_feats[i]) | |
diff_views = y_feats[i].dot(x_feats[i]) | |
id_logs.append({ | |
'diff_target': float(diff_target), | |
'diff_input': float(diff_input), | |
'diff_views': float(diff_views) | |
}) | |
loss += 1 - diff_target | |
id_diff = float(diff_target) - float(diff_views) | |
sim_improvement += id_diff | |
count += 1 | |
return loss / count, sim_improvement / count, id_logs | |