GaussianAnything-AIGC3D / nsr /lsgm /flow_matching_trainer.py
yslan's picture
update
dcc4b7a
"""
https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py#L30
"""
import random
import pytorch3d
import copy
import point_cloud_utils as pcu
import cv2
import matplotlib.pyplot as plt
import torch
import gc
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
from typing import Any
from click import prompt
import einops
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from nsr.camera_utils import generate_input_camera, uni_mesh_path
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm
import trimesh
from nsr.camera_utils import generate_input_camera
from guided_diffusion import dist_util, logger
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion.nn import update_ema
from guided_diffusion.resample import LossAwareSampler, UniformSampler
# from .train_util import TrainLoop3DRec
from guided_diffusion.train_util import (TrainLoop, calc_average_loss,
find_ema_checkpoint,
find_resume_checkpoint,
get_blob_logdir, log_loss_dict,
log_rec3d_loss_dict,
parse_resume_step_from_filename)
from guided_diffusion.gaussian_diffusion import ModelMeanType
from ldm.modules.encoders.modules import FrozenClipImageEmbedder, TextEmbedder, FrozenCLIPTextEmbedder, FrozenOpenCLIPImagePredictionEmbedder, FrozenOpenCLIPImageEmbedder
import dnnlib
from dnnlib.util import requires_grad
from dnnlib.util import calculate_adaptive_weight
from ..train_util_diffusion import TrainLoop3DDiffusion
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD
from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction, different_p_q_objectives, kl_per_group_vada, kl_balancer
# from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD # joint diffusion and rec class
# from .controlLDM import TrainLoop3DDiffusionLSGM_Control # joint diffusion and rec class
from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD # joint diffusion and rec class
# ! add new schedulers from https://github.com/Stability-AI/generative-models
from .crossattn_cldm import TrainLoop3DDiffusionLSGM_crossattn
# Function to generate a rotation matrix for an arbitrary theta along the x-axis
def rotation_matrix_x(theta_degrees):
theta = np.radians(theta_degrees) # Convert degrees to radians
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
rotation_matrix = np.array([[1, 0, 0],
[0, cos_theta, -sin_theta],
[0, sin_theta, cos_theta]])
return rotation_matrix
def rotation_matrix_z(theta):
"""
Returns a 3x3 rotation matrix that rotates a point around the z-axis by theta radians.
Parameters:
theta (float): The angle of rotation in radians.
Returns:
numpy.ndarray: A 3x3 rotation matrix.
"""
return np.array([
[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]
])
def rotation_matrix_y(theta):
"""
Returns a 3x3 rotation matrix that rotates a point around the y-axis by theta radians.
Parameters:
theta (float): The angle of rotation in radians.
Returns:
numpy.ndarray: A 3x3 rotation matrix.
"""
return np.array([
[np.cos(theta), 0, np.sin(theta)],
[0, 1, 0 ],
[-np.sin(theta), 0, np.cos(theta)]
])
# import SD stuffs
from typing import Any, Dict, List, Optional, Tuple, Union
from contextlib import contextmanager
from omegaconf import ListConfig, OmegaConf
from sgm.modules import UNCONDITIONAL_CONFIG
from sgm.util import (default, disabled_train, get_obj_from_str,
instantiate_from_config, log_txt_as_img)
from transport import create_transport, Sampler
import math
# for gs rendering
from utils.gs_utils.graphics_utils import getWorld2View2, getProjectionMatrix, getView2World
from utils.general_utils import matrix_to_quaternion
from utils.mesh_util import post_process_mesh, to_cam_open3d_compat
from datasets.g_buffer_objaverse import focal2fov, fov2focal
import open3d as o3d
# from sgm.sampling_utils.demo.streamlit_helpers import init_sampling
def sample_uniform_cameras_on_sphere(num_samples=1):
# Step 1: Sample azimuth angles uniformly from [0, 2*pi)
theta = np.random.uniform(0, 2 * np.pi, num_samples)
# Step 2: Sample cos(phi) uniformly from [-1, 1]
cos_phi = np.random.uniform(-1, 1, num_samples)
# Step 3: Calculate the elevation angle (phi) from cos(phi)
phi = np.arccos(cos_phi) # phi will be in [0, pi]
# Step 4: Convert spherical coordinates to Cartesian coordinates (x, y, z)
# x = np.sin(phi) * np.cos(theta)
# y = np.sin(phi) * np.sin(theta)
# z = np.cos(phi)
# Combine the x, y, z coordinates into a single array
# cameras = np.vstack((x, y, z)).T # Shape: (num_samples, 3)
# return cameras
return theta, phi
class FlowMatchingEngine(TrainLoop3DDiffusionLSGM_crossattn):
def __init__(
self,
*,
rec_model,
denoise_model,
diffusion,
sde_diffusion,
control_model,
control_key,
only_mid_control,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
resume_cldm_checkpoint=None,
use_fp16=False,
fp16_scale_growth=0.001,
schedule_sampler=None,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
ignore_resume_opt=False,
freeze_ae=False,
denoised_ae=True,
triplane_scaling_divider=10,
use_amp=False,
diffusion_input_size=224,
normalize_clip_encoding=False,
scale_clip_encoding=1,
cfg_dropout_prob=0,
cond_key='img_sr',
use_eos_feature=False,
compile=False,
snr_type='lognorm',
# denoiser_config,
# conditioner_config: Union[None, Dict, ListConfig,
# OmegaConf] = None,
# sampler_config: Union[None, Dict, ListConfig, OmegaConf] = None,
# loss_fn_config: Union[None, Dict, ListConfig, OmegaConf] = None,
**kwargs):
super().__init__(rec_model=rec_model,
denoise_model=denoise_model,
diffusion=diffusion,
sde_diffusion=sde_diffusion,
control_model=control_model,
control_key=control_key,
only_mid_control=only_mid_control,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
resume_cldm_checkpoint=resume_cldm_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
ignore_resume_opt=ignore_resume_opt,
freeze_ae=freeze_ae,
denoised_ae=denoised_ae,
triplane_scaling_divider=triplane_scaling_divider,
use_amp=use_amp,
diffusion_input_size=diffusion_input_size,
normalize_clip_encoding=normalize_clip_encoding,
scale_clip_encoding=scale_clip_encoding,
cfg_dropout_prob=cfg_dropout_prob,
cond_key=cond_key,
use_eos_feature=use_eos_feature,
compile=compile,
**kwargs)
# ! sgm diffusion pipeline
# ! reuse the conditioner
self.snr_type = snr_type
self.latent_key = 'latent'
if self.cond_key == 'caption': # ! text pretrain
if snr_type == 'stage2-t23d':
ldm_configs = OmegaConf.load(
'sgm/configs/stage2-t23d.yaml')['ldm_configs']
elif snr_type == 'stage1-t23d':
ldm_configs = OmegaConf.load(
'sgm/configs/stage1-t23d.yaml')['ldm_configs']
self.latent_key = 'normalized-fps-xyz' # learn xyz diff
else: # just simple t23d, no xyz condition
ldm_configs = OmegaConf.load(
'sgm/configs/t23d-clipl-compat-fm.yaml')['ldm_configs']
else: #
# assert 'lognorm' in snr_type
if snr_type == 'lognorm': # by default
ldm_configs = OmegaConf.load(
'sgm/configs/img23d-clipl-compat-fm-lognorm.yaml')['ldm_configs']
# st()
# if snr_type == 'lognorm-highres': # by default
elif snr_type == 'img-uniform-gvp': # by default
ldm_configs = OmegaConf.load(
'sgm/configs/img23d-clipl-compat-fm-lognorm-336-uniform.yaml')['ldm_configs']
# self.latent_key = 'fps-xyz' # xyz diffusion
self.latent_key = 'normalized-fps-xyz' # to std
elif snr_type == 'img-uniform-gvp-dino': # by default
ldm_configs = OmegaConf.load(
'sgm/configs/img23d-clipl-compat-fm-lognorm-480-uniform-clay-dinoonly.yaml')['ldm_configs']
self.latent_key = 'normalized-fps-xyz' # to std
# elif snr_type == 'img-uniform-gvp-dino-xl': # by default
# ldm_configs = OmegaConf.load(
# 'sgm/configs/img23d-clipl-compat-fm-lognorm-480-uniform-clay-dinoonly.yaml')['ldm_configs']
# self.latent_key = 'normalized-fps-xyz' # to std
elif snr_type == 'img-uniform-gvp-dino-stage2': # by default
ldm_configs = OmegaConf.load(
'sgm/configs/stage2-i23d.yaml')['ldm_configs']
# self.latent_key = 'normalized-fps-xyz' # to std
elif snr_type == 'img-uniform-gvp-clay': # contains both text and image condition
ldm_configs = OmegaConf.load(
'sgm/configs/img23d-clipl-compat-fm-lognorm-480-uniform-clay.yaml')['ldm_configs']
# self.latent_key = 'fps-xyz' # xyz diffusion
self.latent_key = 'normalized-fps-xyz' # to std
elif snr_type == 'pcd-cond-tex':
ldm_configs = OmegaConf.load(
'sgm/configs/img23d-clipl-compat-fm-lognorm-336-uniform-pcdcond.yaml')['ldm_configs']
# 'sgm/configs/img23d-clipl-compat-fm-lognorm-336.yaml')['ldm_configs']
# ! stage-2 text-xyz conditioned
elif snr_type == 'stage2-t23d':
ldm_configs = OmegaConf.load(
'sgm/configs/stage2-t23d.yaml')['ldm_configs']
elif snr_type == 'lognorm-mv':
ldm_configs = OmegaConf.load(
'sgm/configs/mv23d-clipl-compat-fm-lognorm.yaml')['ldm_configs']
# ! mv version
elif snr_type == 'lognorm-mv-plucker':
ldm_configs = OmegaConf.load(
'sgm/configs/mv23d-plucker-clipl-compat-fm-lognorm-noclip.yaml')['ldm_configs']
# 'sgm/configs/mv23d-plucker-clipl-compat-fm-lognorm.yaml')['ldm_configs']
elif snr_type == 'stage1-mv-t23dpt':
self.latent_key = 'normalized-fps-xyz' # learn xyz diff
ldm_configs = OmegaConf.load(
'sgm/configs/stage1-mv23d-t23dpt.yaml')['ldm_configs']
elif snr_type == 'stage1-mv-i23dpt':
self.latent_key = 'normalized-fps-xyz' # learn xyz diff
ldm_configs = OmegaConf.load(
'sgm/configs/stage1-mv23d-i23dpt.yaml')['ldm_configs']
elif snr_type == 'stage1-mv-i23dpt-noi23d':
self.latent_key = 'normalized-fps-xyz' # learn xyz diff
ldm_configs = OmegaConf.load(
'sgm/configs/stage1-mv23d-i23dpt-noi23d.yaml')['ldm_configs']
elif snr_type == 'stage2-mv-i23dpt':
# self.latent_key = 'normalized-fps-xyz' # learn xyz diff
ldm_configs = OmegaConf.load(
'sgm/configs/stage2-mv23d-i23dpt.yaml')['ldm_configs']
else:
ldm_configs = OmegaConf.load(
'sgm/configs/img23d-clipl-compat-fm.yaml')['ldm_configs']
self.loss_fn = (
instantiate_from_config(ldm_configs.loss_fn_config)
# if loss_fn_config is not None
# else None
)
# self.denoiser = instantiate_from_config(
# ldm_configs.denoiser_config).to(dist_util.dev())
self.transport_sampler = Sampler(self.loss_fn.transport, guider_config=ldm_configs.guider_config)
self.conditioner = instantiate_from_config(
default(ldm_configs.conditioner_config,
UNCONDITIONAL_CONFIG)).to(dist_util.dev())
# ! setup optimizer (with cond embedder params here)
self._set_grad_flag()
self._setup_opt2()
self._load_model2()
def _set_grad_flag(self):
requires_grad(self.ddpm_model, True) # do not change this flag during training.
def _setup_opt(self):
pass # see below
def _setup_opt2(self):
# ! add trainable conditioner parameters
# https://github.com/Stability-AI/generative-models/blob/fbdc58cab9f4ee2be7a5e1f2e2787ecd9311942f/sgm/models/diffusion.py#L219
# params = list(self.ddpm_model.parameters())
# https://discuss.pytorch.org/t/how-the-pytorch-freeze-network-in-some-layers-only-the-rest-of-the-training/7088/7
self.opt = AdamW([{
'name': 'ddpm',
# 'params': self.ddpm_model.parameters(),
'params': filter(lambda p: p.requires_grad, self.ddpm_model.parameters()), # if you want to freeze some layers
},
],
lr=self.lr,
weight_decay=self.weight_decay)
embedder_params = []
for embedder in self.conditioner.embedders:
if embedder.is_trainable:
embedder_params = embedder_params + list(embedder.parameters())
if len(embedder_params) != 0:
self.opt.add_param_group(
{
'name': 'embedder',
'params': embedder_params,
'lr': self.lr*0.5, # smaller lr to finetune dino/clip
}
)
print(self.opt)
def save(self, mp_trainer=None, model_name='ddpm'):
# save embedder params also
super().save(mp_trainer, model_name)
# save embedder ckpt
if dist_util.get_rank() == 0:
for embedder in self.conditioner.embedders:
if embedder.is_trainable:
# embedder_params = embedder_params + list(embedder.parameters())
model_name = embedder.__class__.__name__
filename = f"embedder_{model_name}{(self.step+self.resume_step):07d}.pt"
with bf.BlobFile(bf.join(get_blob_logdir(), filename),
"wb") as f:
th.save(embedder.state_dict(), f)
dist_util.synchronize()
def _load_model2(self):
# ! load embedder
for embedder in self.conditioner.embedders:
if embedder.is_trainable:
# embedder_params = embedder_params + list(embedder.parameters())
model_name = embedder.__class__.__name__
filename = f"embedder_{model_name}{(self.step+self.resume_step):07d}.pt"
# embedder_FrozenDinov2ImageEmbedderMV2115000.pt
# with bf.BlobFile(bf.join(get_blob_logdir(), filename),
# "wb") as f:
# th.save(embedder.state_dict(), f)
split = self.resume_checkpoint.split("model")
resume_checkpoint = str(
Path(split[0]) / filename)
if os.path.exists(resume_checkpoint):
if dist.get_rank() == 0:
logger.log(
f"loading cond embedder from checkpoint: {resume_checkpoint}...")
# if model is None:
# model = self.model
embedder.load_state_dict(
dist_util.load_state_dict(
resume_checkpoint,
map_location=dist_util.dev(),
))
else:
logger.log(f'{resume_checkpoint} not found.')
if dist_util.get_world_size() > 1:
dist_util.sync_params(embedder.parameters())
def instantiate_cond_stage(self, normalize_clip_encoding,
scale_clip_encoding, cfg_dropout_prob,
use_eos_feature):
# https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py#L509C1-L509C46
# self.cond_stage_model.train = disabled_train # type: ignore
# if self.cond_key == 'caption':
# self.cond_txt_model = TextEmbedder(dropout_prob=cfg_dropout_prob,
# use_eos_feature=use_eos_feature)
# elif self.cond_key == 'img':
# self.cond_img_model = FrozenOpenCLIPImagePredictionEmbedder(
# 1, 1,
# FrozenOpenCLIPImageEmbedder(freeze=True,
# device=dist_util.dev(),
# init_device=dist_util.dev()))
# else: # zero-shot Text to 3D using normalized clip latent
# self.cond_stage_model = FrozenClipImageEmbedder(
# 'ViT-L/14',
# dropout_prob=cfg_dropout_prob,
# normalize_encoding=normalize_clip_encoding,
# scale_clip_encoding=scale_clip_encoding)
# self.cond_stage_model.freeze()
# self.cond_txt_model = FrozenCLIPTextEmbedder(
# dropout_prob=cfg_dropout_prob,
# scale_clip_encoding=scale_clip_encoding)
# self.cond_txt_model.freeze()
pass # initialized in the self.__init__() using SD api
# ! already merged
def prepare_ddpm(self, eps, mode='p'):
raise NotImplementedError('already implemented in self.denoiser')
# merged from noD.py
# use sota denoiser, loss_fn etc.
def ldm_train_step(self, batch, behaviour='cano', *args, **kwargs):
# ! enable the gradient of both models
# requires_grad(self.ddpm_model, True)
self._set_grad_flag() # more flexible
self.mp_trainer.zero_grad() # !!!!
if 'img' in batch:
batch_size = batch['img'].shape[0]
else:
batch_size = len(batch['caption'])
for i in range(0, batch_size, self.microbatch):
micro = {
k:
v[i:i + self.microbatch].to(dist_util.dev()) if isinstance(
v, th.Tensor) else v[i:i+self.microbatch]
for k, v in batch.items()
}
# move condition to self.dtype
# =================================== ae part ===================================
# with th.cuda.amp.autocast(dtype=th.bfloat16,
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
loss = th.tensor(0.).to(dist_util.dev())
assert 'latent' in micro
# st() # torchvision.utils.save_image(micro['img'], 'tmp/img.png', normalize=True, value_range=(-1,1))
# vae_out = {self.latent_name: micro['latent']}
# else:
# vae_out = self.ddp_rec_model(
# img=micro['img_to_encoder'],
# c=micro['c'],
# behaviour='encoder_vae',
# ) # pred: (B, 3, 64, 64)
# eps = vae_out[self.latent_name] / self.triplane_scaling_divider
# ! if training xyz only
# eps = vae_out[self.latent_name][..., -3:] / self.triplane_scaling_divider
# ! if training texture only
eps = micro[self.latent_key] / self.triplane_scaling_divider
if self.cond_key == 'img-c':
micro['img-c'] = {
# 'img': micro['img'].to(self.dtype),
'img': micro['mv_img'].to(self.dtype), # for compat issue
'c': micro['c'].to(self.dtype),
}
# log_rec3d_loss_dict({
# f"mv-alpha/{i}": self.ddpm_model.blocks[i].mv_alpha[0] for i in range(len(self.ddpm_model.blocks))
# })
loss, loss_other_info = self.loss_fn(self.ddp_ddpm_model,
# self.denoiser,
self.conditioner,
eps.to(self.dtype),
micro) # type: ignore
loss = loss.mean()
# log_rec3d_loss_dict({})
log_rec3d_loss_dict({
# 'eps_mean':
# eps.mean(),
# 'eps_std':
# eps.std([1, 2, 3]).mean(0),
# 'pred_x0_std':
# loss_other_info['model_output'].std([1, 2, 3]).mean(0),
"p_loss":
loss,
})
self.mp_trainer.backward(loss) # joint gradient descent
# update ddpm accordingly
self.mp_trainer.optimize(self.opt)
# ! directly eval_cldm() for sampling.
# if dist_util.get_rank() == 0 and self.step % 500 == 0:
# self.log_control_images(vae_out, micro, loss_other_info)
@th.inference_mode()
def log_control_images(self, vae_out, micro, ddpm_ret):
if 'posterior' in vae_out:
vae_out.pop('posterior') # for calculating kl loss
vae_out_for_pred = {self.latent_name: vae_out[self.latent_name][0:1].to(self.dtype)}
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
pred = self.ddp_rec_model(latent=vae_out_for_pred,
c=micro['c'][0:1],
behaviour=self.render_latent_behaviour)
assert isinstance(pred, dict)
pred_img = pred['image_raw']
if 'img' in micro:
gt_img = micro['img']
else:
gt_img = th.zeros_like(pred['image_raw'])
if 'depth' in micro:
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
gt_depth.min())
else:
gt_depth = th.zeros_like(gt_img[:, 0:1, ...])
if 'image_depth' in pred:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
else:
pred_depth = th.zeros_like(gt_depth)
gt_img = self.pool_128(gt_img)
gt_depth = self.pool_128(gt_depth)
# cond = self.get_c_input(micro)
# hint = th.cat(cond['c_concat'], 1)
gt_vis = th.cat(
[
gt_img,
gt_img,
gt_img,
# self.pool_128(hint),
# gt_img,
gt_depth.repeat_interleave(3, dim=1)
],
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1]
# eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L
# self.sampler
noised_latent, sigmas, x_start = [
ddpm_ret[k] for k in ['noised_input', 'sigmas', 'model_output']
]
noised_latent = {
'latent_normalized_2Ddiffusion':
noised_latent[0:1].to(self.dtype) * self.triplane_scaling_divider,
}
denoised_latent = {
'latent_normalized_2Ddiffusion':
x_start[0:1].to(self.dtype) * self.triplane_scaling_divider,
}
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
noised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=noised_latent,
behaviour=self.render_latent_behaviour)
# pred_x0 = self.sde_diffusion._predict_x0_from_eps(
# eps_t_p, pred_eps_p, logsnr_p) # for VAE loss, denosied latent
# pred_xstart_3D
denoised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=denoised_latent,
# latent=pred_x0[0:1] * self.
# triplane_scaling_divider, # TODO, how to define the scale automatically?
behaviour=self.render_latent_behaviour)
pred_vis = th.cat(
[
self.pool_128(img) for img in (
pred_img[0:1],
noised_ae_pred['image_raw'][0:1],
denoised_ae_pred['image_raw'][0:1], # controlnet result
pred_depth[0:1].repeat_interleave(3, dim=1))
],
dim=-1) # B, 3, H, W
if 'img' in micro:
vis = th.cat([gt_vis, pred_vis],
dim=-2)[0].permute(1, 2,
0).cpu() # ! pred in range[-1, 1]
else:
vis = pred_vis[0].permute(1, 2, 0).cpu()
# vis_grid = torchvision.utils.make_grid(vis) # HWC
vis = vis.numpy() * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
img_save_path = f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{sigmas[0].item():3}.jpg'
Image.fromarray(vis).save(img_save_path)
# if self.cond_key == 'caption':
# with open(f'{logger.get_dir()}/{self.step+self.resume_step}caption_{t_p[0].item():3}.txt', 'w') as f:
# f.write(micro['caption'][0])
print('log denoised vis to: ', img_save_path)
th.cuda.empty_cache()
@th.no_grad()
def sample(
self,
cond: Dict,
uc: Union[Dict, None] = None,
batch_size: int = 16,
shape: Union[None, Tuple, List] = None,
use_cfg=True,
# cfg_scale=4, # default value in SiT
# cfg_scale=1.5, # default value in SiT
cfg_scale=4.0, # default value in SiT
seed=42,
**kwargs,
):
# self.sampler
sample_fn = self.transport_sampler.sample_ode(num_steps=250, cfg=True) # default ode sampling setting.
logger.log(f'cfg_scale: {cfg_scale}, seed: {seed}')
th.manual_seed(seed) # to reproduce result
zs = th.randn(batch_size, *shape).to(dist_util.dev()).to(self.dtype)
# st()
assert use_cfg
# sample_model_kwargs = {'uc': uc, 'cond': cond}
model_fn = self.ddpm_model.forward_with_cfg # default
# ! prepare_inputs in VanillaCFG, for compat issue
c_out = {}
for k in cond:
# if k in ["vector", "crossattn", "concat", 'fps-xyz']:
c_out[k] = th.cat((cond[k], uc[k]), 0)
# else:
# assert cond[k] == uc[k]
# c_out[k] = cond[k]
sample_model_kwargs = {'context': c_out, 'cfg_scale': cfg_scale}
zs = th.cat([zs, zs], 0)
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
samples = sample_fn(zs, model_fn, **sample_model_kwargs)[-1]
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
# return samples
return samples * self.triplane_scaling_divider
@th.inference_mode()
def eval_cldm(
self,
prompt="",
# use_ddim=False,
# unconditional_guidance_scale=1.0,
unconditional_guidance_scale=4.0,
seed=42,
save_img=False,
use_train_trajectory=False,
camera=None,
num_samples=1,
num_instances=1,
export_mesh=False,
):
# ! slightly modified for new API. combined with
# /cpfs01/shared/V2V/V2V_hdd/yslan/Repo/generative-models/sgm/models/diffusion.py:249 log_images()
# TODO, support batch_size > 1
self.ddpm_model.eval()
args = dnnlib.EasyDict(
dict(
batch_size=1,
image_size=self.diffusion_input_size,
denoise_in_channels=self.rec_model.decoder.triplane_decoder.
out_chans, # type: ignore
clip_denoised=False,
class_cond=False))
model_kwargs = {}
uc = None
log = dict()
ucg_keys = [self.cond_key] # i23d
# if self.cond_key == 'caption':
if self.cond_key in ['caption', 'img-xyz']:
# batch_c = {self.cond_key: prompt}
# batch_c = {self.cond_key: prompt}
batch_c = next(self.data) # ! use training set to evaluate t23d for now.
elif self.cond_key == 'img-caption':
batch_c = {'caption': prompt, 'img': batch['img'].to(dist_util.dev()).to(self.dtype)}
else:
batch = next(self.data) # random cond here
if self.cond_key == 'img-c':
batch_c = {
self.cond_key: {
# 'img': batch['img'].to(self.dtype).to(dist_util.dev()),
'img': batch['mv_img'].to(self.dtype).to(dist_util.dev()),
'c': batch['c'].to(self.dtype).to(dist_util.dev()),
},
'img': batch['img'].to(self.dtype).to(dist_util.dev()) # required by clip
}
else:
batch_c = {self.cond_key: batch[self.cond_key].to(dist_util.dev()).to(self.dtype)}
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
c, uc = self.conditioner.get_unconditional_conditioning(
batch_c,
force_uc_zero_embeddings=ucg_keys
if len(self.conditioner.embedders) > 0 else [],
)
sampling_kwargs = {'seed': seed, 'cfg_scale': unconditional_guidance_scale}
N = 3 # hard coded, to update
z_shape = (
N,
self.ddpm_model.in_channels if not self.ddpm_model.roll_out else
3 * self.ddpm_model.in_channels, # type: ignore
self.diffusion_input_size,
self.diffusion_input_size)
for k in c:
if isinstance(c[k], th.Tensor):
c[k], uc[k] = map(lambda y: y[k][:N].to(dist_util.dev()),
(c, uc))
samples = self.sample(c,
shape=z_shape[1:],
uc=uc,
batch_size=N,
**sampling_kwargs)
# st() # do rendering first
# ! get c
if 'img' in self.cond_key:
img_save_path = f'{logger.get_dir()}/{self.step+self.resume_step}_imgcond.jpg'
if 'c' in self.cond_key:
torchvision.utils.save_image(batch_c['img'][0], img_save_path, value_range=(-1,1), normalize=True, padding=0) # torch.Size([24, 6, 3, 256, 256])
th.save(batch_c['img-c']['c'][0], f'{logger.get_dir()}/{self.step+self.resume_step}_c.pt')
else:
torchvision.utils.save_image(batch_c['img'][0:1], img_save_path, value_range=(-1,1), normalize=True, padding=0)
assert camera is not None
batch = {'c': camera.clone()}
# else:
# if use_train_trajectory:
# batch = next(iter(self.data))
# else:
# try:
# batch = next(self.eval_data)
# except Exception as e:
# self.eval_data = iter(self.eval_data)
# batch = next(self.eval_data)
# if camera is not None:
# batch['c'] = camera.clone()
# rendering
for i in range(samples.shape[0]):
th.cuda.empty_cache()
# ! render sampled latent
name_prefix = f'{self.step + self.resume_step}_{i}'
if self.cond_key == 'caption':
name_prefix = f'{name_prefix}_{prompt}'
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
self.render_video_given_triplane(
samples[i:i+1].to(self.dtype), # default version
self.rec_model, # compatible with join_model
name_prefix=name_prefix,
save_img=save_img,
render_reference=batch,
export_mesh=False)
self.ddpm_model.train()
class FlowMatchingEngine_gs(FlowMatchingEngine):
def __init__(
self,
*,
rec_model,
denoise_model,
diffusion,
sde_diffusion,
control_model,
control_key,
only_mid_control,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
resume_cldm_checkpoint=None,
use_fp16=False,
fp16_scale_growth=0.001,
schedule_sampler=None,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
ignore_resume_opt=False,
freeze_ae=False,
denoised_ae=True,
triplane_scaling_divider=10,
use_amp=False,
diffusion_input_size=224,
normalize_clip_encoding=False,
scale_clip_encoding=1,
cfg_dropout_prob=0,
cond_key='img_sr',
use_eos_feature=False,
compile=False,
snr_type='lognorm',
**kwargs):
super().__init__(rec_model=rec_model,
denoise_model=denoise_model,
diffusion=diffusion,
sde_diffusion=sde_diffusion,
control_model=control_model,
control_key=control_key,
only_mid_control=only_mid_control,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
resume_cldm_checkpoint=resume_cldm_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
ignore_resume_opt=ignore_resume_opt,
freeze_ae=freeze_ae,
denoised_ae=denoised_ae,
triplane_scaling_divider=triplane_scaling_divider,
use_amp=use_amp,
diffusion_input_size=diffusion_input_size,
normalize_clip_encoding=normalize_clip_encoding,
scale_clip_encoding=scale_clip_encoding,
cfg_dropout_prob=cfg_dropout_prob,
cond_key=cond_key,
use_eos_feature=use_eos_feature,
compile=compile,
snr_type=snr_type,
**kwargs)
self.gs_bg_color=th.tensor([1,1,1], dtype=th.float32, device=dist_util.dev())
self.latent_name = 'latent_normalized' # normalized triplane latent
# self.pcd_unnormalize_fn = lambda x: x.clip(-1,1) * 0.45 # [-1,1] -> [-0.45, 0.45] as in g-buffer dataset.
# self.pcd_unnormalize_fn = lambda x: (x * 0.1862).clip(-0.45, 0.45) # [-1,1] -> [-0.45, 0.45] as in g-buffer dataset.
# /cpfs01/user/lanyushi.p/logs/nips24/LSGM/t23d/FM/9cls/gs/i23d/dit-b/gpu4-batch32-lr1e-4-gs_surf_latent_224-drop0.33-same
# self.pcd_unnormalize_fn = lambda x: (x * 0.158).clip(-0.45, 0.45) # [-1,1] -> [-0.45, 0.45] as in g-buffer dataset.
# self.feat_scale_factor = th.Tensor([0.99227685, 1.014337 , 0.20842505, 0.98727155, 0.3305389 ,
# 0.38729668, 1.0155401 , 0.9728264 , 1.0009694 , 0.97328585,
# 0.2881106 , 0.1652732 , 0.3482468 , 0.9971449 , 0.99895126,
# 0.18491288]).float().reshape(1,1,-1)
# stat for normalization
# self.xyz_mean = torch.Tensor([-0.00053714, 0.08095618, -0.01914407] ).reshape(1, 3).float()
# self.xyz_std = th.Tensor([0.14593576, 0.15753542, 0.18873914] ).reshape(1,3).float().to(dist_util.dev())
self.xyz_std = 0.164
# ! for debug
self.kl_mean = th.Tensor([ 0.0184, 0.0024, 0.0926, 0.0517, 0.1781, 0.7137, -0.0355, 0.0267,
0.0183, 0.0164, -0.5090, 0.2406, 0.2733, -0.0256, -0.0285, 0.0761]).reshape(1,16).float().to(dist_util.dev())
self.kl_std = th.Tensor([1.0018, 1.0309, 1.3001, 1.0160, 0.8182, 0.8023, 1.0591, 0.9789, 0.9966,
0.9448, 0.8908, 1.4595, 0.7957, 0.9871, 1.0236, 1.2923]).reshape(1,16).float().to(dist_util.dev())
# ! for surfel-gs rendering
self.zfar = 100.0
self.znear = 0.01
def unnormalize_pcd_act(self, x):
return x * self.xyz_std
def unnormalize_kl_feat(self, latent):
# return latent / self.feat_scale_factor
# return (latent-self.kl_mean) / self.kl_std
return (latent * self.kl_std) + self.kl_mean
# def unnormalize_kl_feat(self, latent):
# return latent * self.feat_scale_factor
@th.inference_mode()
def eval_cldm(
self,
prompt="Yellow rubber duck",
# use_ddim=False,
# unconditional_guidance_scale=1.0,
save_img=False,
use_train_trajectory=False,
camera=None,
num_samples=1,
num_instances=1,
export_mesh=False,
):
self.ddpm_model.eval()
args = dnnlib.EasyDict(
dict(
batch_size=1,
image_size=self.diffusion_input_size,
denoise_in_channels=self.rec_model.decoder.triplane_decoder.
out_chans, # type: ignore
clip_denoised=False,
class_cond=False))
model_kwargs = {}
uc = None
log = dict()
ucg_keys = [self.cond_key] # i23d
if self.cond_key == 'caption':
if prompt == '':
batch = next(self.data) # random cond here
batch_c = {self.cond_key: prompt,
'fps-xyz': batch['fps-xyz'].to(self.dtype).to(dist_util.dev()),
}
else:
# ! TODO, update the cascaded generation fps-xyz loading. Manual load for now.
batch_c = {
self.cond_key: prompt
}
if self.latent_key == 'latent': # stage 2
# hard-coded path for now
# fps_xyz_output_prefix = '/nas/shared/public/yslan/logs/nips24/LSGM/t23d/FM/9cls/gs-disentangle/cascade_check/clay/stage1/eval/clip_text/50w-iter/'
# stage1_num_steps = '500000'
batch = next(self.data) # random cond here
batch_c[self.cond_key] = batch[self.cond_key][0:1] # colorizing GT xyz
gt_xyz = batch['fps-xyz'][0:1]
gt_kl_latent = batch['latent'][0:1]
# cascaded = False
# st()
# if self.step % 1e4 == 0:
# cascaded = True
# else:
cascaded = False
prompt = batch[self.cond_key][0:1] # replace with on-the-fly GT point clouds
batch_c[self.cond_key] = prompt
# ! for logging two-stage cascaded result. change the path to your stage-1 output pcd logdir.
if cascaded: # ! use stage-1 as output
# fps_xyz_output_prefix = '/nas/shared/public/yslan/logs/nips24/LSGM/t23d/FM/9cls/gs-disentangle/cascade_check/clay/stage1/eval/clip_text/60w-iter/'
fps_xyz_output_prefix = ''
stage1_num_steps = '600000'
fps_xyz = torch.from_numpy(pcu.load_mesh_v(f'{fps_xyz_output_prefix}/{stage1_num_steps}_0_{prompt}.ply') ).clip(-0.45,0.45).unsqueeze(0)
batch_c.update({
'fps-xyz': fps_xyz.to(self.dtype).to(dist_util.dev())
})
else:
# use gt as condition
# batch_c = {k: v[0:1].to(self.dtype).to(dist_util.dev()) for k, v in batch_c.items() if k in [self.cond_key, 'fps-xyz']}
for k in ['fps-xyz']:
batch_c[k] = batch[k][0:1].to(self.dtype).to(dist_util.dev())
batch_c[self.cond_key] = prompt
else:
batch = next(self.data) # random cond here
#! debugging, get GT xyz and KL latent for disentangled debugging
if self.cond_key == 'img-c':
prompt = batch['caption'][0:1]
batch_c = {
self.cond_key: {
'img': batch['mv_img'][0:1].to(self.dtype).to(dist_util.dev()),
'c': batch['c'][0:1].to(self.dtype).to(dist_util.dev()),
},
'img': batch['img'][0:1].to(self.dtype).to(dist_util.dev()),
'caption': prompt,
'fps-xyz': batch['fps-xyz'][0:1].to(self.dtype).to(dist_util.dev())
}
elif self.cond_key == 'img-caption':
batch_c = {'caption': prompt, 'img': batch['img'].to(dist_util.dev()).to(self.dtype)}
elif self.cond_key == 'img-xyz':
# load local xyz here
# fps_xyz = torch.from_numpy(pcu.load_mesh_v('/cpfs01/user/lanyushi.p/Repo/diffusion-3d/tmp/sampled-0.ply') ).clip(-0.45,0.45).unsqueeze(0)
# fps_xyz = torch.from_numpy(pcu.load_mesh_v('/cpfs01/user/lanyushi.p/Repo/diffusion-3d/tmp/sampled-2.ply') ).clip(-0.45,0.45).unsqueeze(0)
# fps_xyz = torch.from_numpy(pcu.load_mesh_v('/cpfs01/user/lanyushi.p/Repo/diffusion-3d/tmp/sampled-1.ply') ).clip(-0.45,0.45).unsqueeze(0)
# fps_xyz = torch.from_numpy(pcu.load_mesh_v('/cpfs01/user/lanyushi.p/Repo/diffusion-3d/tmp/sampled-3.ply') ).clip(-0.45,0.45).unsqueeze(0)
# fps_xyz = torch.from_numpy(pcu.load_mesh_v('/nas/shared/V2V/yslan/logs/nips24/LSGM/t23d/FM/9cls/gs-disentangle/cascade_check/xyz_output_fullset_stillclip_but448_eval/1725000_0_0.ply') ).clip(-0.45,0.45).unsqueeze(0)
# fps_xyz = torch.from_numpy(pcu.load_mesh_v('/nas/shared/V2V/yslan/logs/nips24/LSGM/t23d/FM/9cls/gs-disentangle/cascade_check/xyz_output_fullset_stillclip_but448_eval/1725000_0_0.ply') ).clip(-0.45,0.45).unsqueeze(0)
# fps_xyz = torch.from_numpy(pcu.load_mesh_v('/nas/shared/public/yslan/logs/nips24/LSGM/t23d/FM/9cls/gs-disentangle/cascade_check/clay/stage1/eval/dino_img/debug/1875000_0.ply') ).clip(-0.45,0.45).unsqueeze(0)
# fps_xyz = torch.from_numpy(pcu.load_mesh_v('/nas/shared/public/yslan/logs/nips24/LSGM/t23d/FM/9cls/gs-disentangle/cascade_check/clay/stage1/eval/dino_img/debug/1875000_0_0.ply') ).clip(-0.45,0.45).unsqueeze(0)
# ! edit
# st()
# fps_xyz[..., 2:3] *= 4
# fps_xyz[..., 2:3] *= 3
# fps_xyz = torch.from_numpy(pcu.load_mesh_v('/nas/shared/V2V/yslan/logs/nips24/LSGM/t23d/FM/9cls/gs-disentangle/cascade_check/xyz_output_fullset_stillclip_but448_eval/1725000_0_1.ply') ).clip(-0.45,0.45).unsqueeze(0)
batch_c = {
# 'img': batch['img'][[1,0]].to(self.dtype).to(dist_util.dev()),
'img': batch['img'][0:1].to(self.dtype).to(dist_util.dev()),
'fps-xyz': batch['fps-xyz'][0:1].to(self.dtype).to(dist_util.dev()),
# 'caption': batch['caption']
# 'fps-xyz': fps_xyz.repeat(batch['img'].shape[0],1,1).to(self.dtype).to(dist_util.dev()),
}
else:
# gt_xyz = batch['fps-xyz'][0:1]
# gt_kl_latent = batch['latent'][0:1]
batch_c = {self.cond_key: batch[self.cond_key][0:1].to(dist_util.dev()).to(self.dtype), }
# swap for more results, hard-coded here.
# if 'img' in batch_c:
# batch_c['img'] = batch_c['img'][[1,0]]
# batch_c['fps-xyz'] = batch_c['fps-xyz'][[1,0]]
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
c, uc = self.conditioner.get_unconditional_conditioning(
batch_c,
force_uc_zero_embeddings=ucg_keys
if len(self.conditioner.embedders) > 0 else [],
)
sampling_kwargs = {}
N = num_samples # hard coded, to update
z_shape = (N, 768, self.ddpm_model.in_channels)
for k in c:
if isinstance(c[k], th.Tensor):
# c[k], uc[k] = map(lambda y: y[k][:N].to(dist_util.dev()),
# (c, uc))
assert c[k].shape[0] == 1 # ! support batch inference
c[k], uc[k] = map(lambda y: y[k].repeat_interleave(N, 0).to(dist_util.dev()),
(c, uc)) # support bs>1 sampling given a condition
samples = self.sample(c,
shape=z_shape[1:],
uc=uc,
batch_size=N,
**sampling_kwargs)
# ! get c
if 'img' in self.cond_key:
img_save_path = f'{logger.get_dir()}/{self.step+self.resume_step}_imgcond.jpg'
if 'c' in self.cond_key:
mv_img_save_path = f'{logger.get_dir()}/{self.step+self.resume_step}_mv-imgcond.jpg'
torchvision.utils.save_image(batch_c['img-c']['img'][0], mv_img_save_path, value_range=(-1,1), normalize=True, padding=0) # torch.Size([24, 6, 3, 256, 256])
torchvision.utils.save_image(batch_c['img'][0], img_save_path, value_range=(-1,1), normalize=True, padding=0) # torch.Size([24, 6, 3, 256, 256])
else:
torchvision.utils.save_image(batch_c['img'], img_save_path, value_range=(-1,1), normalize=True, padding=0)
assert camera is not None
batch = {'c': camera.clone()}
# rendering
for i in range(samples.shape[0]):
th.cuda.empty_cache()
# ! render sampled latent
name_prefix = f'{self.step + self.resume_step}_{i}'
# if self.cond_key in ['caption', 'img-c']:
if self.cond_key in ['caption']:
if isinstance(prompt, list):
name_prefix = f'{name_prefix}_{"-".join(prompt[0].split())}'
else:
name_prefix = f'{name_prefix}_{"-".join(prompt.split())}'
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
# # ! todo, transform to gs camera
if self.latent_key != 'latent': # normalized-xyz
pcu.save_mesh_v( f'{logger.get_dir()}/{name_prefix}.ply', self.unnormalize_pcd_act(samples[i]).detach().cpu().float().numpy())
logger.log(f'point cloud saved to {logger.get_dir()}/{name_prefix}.ply')
else:
# ! editing debug
self.render_gs_video_given_latent(
# samples[i:i+1].to(self.dtype), # default version
# th.cat([gt_kl_latent.to(samples), gt_xyz.to(samples)], dim=-1),
# ! xyz-cond kl feature gen:
th.cat([samples[i:i+1], batch_c['fps-xyz'][i:i+1]], dim=-1), # ! debugging xyz diffusion
# ! xyz debugging
# th.cat([gt_kl_latent.to(samples), samples[i:i+1]], dim=-1), # ! debugging xyz diffusion
# th.cat([samples[i:i+1], gt_xyz.to(samples), ], dim=-1) # ! debugging kl feature diffusion
self.rec_model, # compatible with join_model
name_prefix=name_prefix,
save_img=save_img,
render_reference=batch,
export_mesh=False)
# st()
pass
# for noise_scale in np.linspace(0,0.1, 10):
# per_scale_name_prefix = f'{name_prefix}_{noise_scale}'
# self.render_gs_video_given_latent( th.cat([gt_kl_latent.to(samples), (gt_xyz+noise_scale*th.randn_like(gt_xyz)).to(samples)], dim=-1), self.rec_model, name_prefix=per_scale_name_prefix, save_img=save_img, render_reference=batch, export_mesh=False)
# self.render_gs_video_given_latent( th.cat([gt_kl_latent.to(samples), (batch_c['fps-xyz'][0:1]).to(samples)], dim=-1), self.rec_model, name_prefix=per_scale_name_prefix, save_img=save_img, render_reference=batch, export_mesh=False)
# pcu.save_mesh_v( f'{logger.get_dir()}/sampled-4.ply', self.unnormalize_pcd_act(samples[0]).detach().cpu().float().numpy())
# st()
# pcu.save_mesh_v( f'tmp/sampled-3.ply', self.unnormalize_pcd_act(samples[0]).detach().cpu().float().numpy())
gc.collect()
self.ddpm_model.train()
@torch.no_grad()
def export_mesh_from_2dgs(self, all_rgbs, all_depths, all_alphas, cam_pathes, idx, i):
# https://github.com/autonomousvision/LaRa/blob/main/evaluation.py
n_thread = 1 # avoid TSDF cpu hanging bug.
os.environ["MKL_NUM_THREADS"] = f"{n_thread}"
os.environ["NUMEXPR_NUM_THREADS"] = f"{n_thread}"
os.environ["OMP_NUM_THREADS"] = f"4"
os.environ["VECLIB_MAXIMUM_THREADS"] = f"{n_thread}"
os.environ["OPENBLAS_NUM_THREADS"] = f"{n_thread}"
# copied from: https://github.com/hbb1/2d-gaussian-splatting/blob/19eb5f1e091a582e911b4282fe2832bac4c89f0f/render.py#L23
logger.log("exporting mesh ...")
# os.makedirs(train_dir, exist_ok=True)
train_dir = logger.get_dir()
# for g-objv
# aabb = [-0.5,-0.5,-0.5,0.5,0.5,0.5]
# aabb = None
aabb = [-0.45,-0.45,-0.45,0.45,0.45,0.45]
self.aabb = np.array(aabb).reshape(2,3)*1.1
# center = self.aabb.mean(0)
# radius = np.linalg.norm(self.aabb[1] - self.aabb[0]) * 0.5
# voxel_size = radius / 256
# sdf_trunc = voxel_size * 2
# print("using aabb")
# set the active_sh to 0 to export only diffuse texture
# gaussExtractor.gaussians.active_sh_degree = 0
# gaussExtractor.reconstruction(scene.getTrainCameras())
# extract the mesh and save
# if args.unbounded:
# name = 'fuse_unbounded.ply'
# mesh = gaussExtractor.extract_mesh_unbounded(resolution=args.mesh_res)
# else:
# name = f'{idx}-{i}-fuse.ply'
# name = f'mesh.obj'
name = f'{idx}/{i}-mesh_raw.obj'
# st()
# depth_trunc = (radius * 2.0) if depth_trunc < 0 else depth_trunc
# voxel_size = (depth_trunc / mesh_res) if voxel_size < 0 else voxel_size
# sdf_trunc = 5.0 * voxel_size if sdf_trunc < 0 else sdf_trunc
# mesh = self.extract_mesh_bounded(all_rgbs, all_depths, all_alphas, cam_pathes, voxel_size=voxel_size, sdf_trunc=sdf_trunc, depth_trunc=depth_trunc, mask_backgrond=False)
mesh = self.extract_mesh_bounded(all_rgbs, all_depths, all_alphas, cam_pathes)
o3d.io.write_triangle_mesh(os.path.join(train_dir, name), mesh)
logger.log("mesh saved at {}".format(os.path.join(train_dir, name)))
# post-process the mesh and save, saving the largest N clusters
# mesh_post = post_process_mesh(mesh, cluster_to_keep=num_cluster)
mesh_post = post_process_mesh(mesh)
mesh_vertices = np.asarray(mesh_post.vertices) # Convert vertices to a numpy array
rotated_vertices = mesh_vertices @ rotation_matrix_x(-90).T
# rotated_vertices = rotated_vertices @ rotation_matrix_z(np.pi).T
rotated_vertices = rotated_vertices @ rotation_matrix_y(np.pi).T
mesh_post.vertices = o3d.utility.Vector3dVector(rotated_vertices) # Update vertices
post_mesh_path = os.path.join(train_dir, name.replace('_raw.obj', '.obj'))
o3d.io.write_triangle_mesh(post_mesh_path, mesh_post)
logger.log("mesh post processed saved at {}".format(post_mesh_path))
return post_mesh_path
@torch.no_grad()
def extract_mesh_bounded(self, rgbmaps, depthmaps, alpha_maps, cam_pathes, voxel_size=0.004, sdf_trunc=0.02, depth_trunc=3, alpha_thres=0.08, mask_backgrond=False):
"""
Perform TSDF fusion given a fixed depth range, used in the paper.
voxel_size: the voxel size of the volume
sdf_trunc: truncation value
depth_trunc: maximum depth range, should depended on the scene's scales
mask_backgrond: whether to mask backgroud, only works when the dataset have masks
return o3d.mesh
"""
# if self.aabb is not None: # as in lara.
# center = self.aabb.mean(0)
# radius = np.linalg.norm(self.aabb[1] - self.aabb[0]) * 0.5
# voxel_size = radius / 256
# sdf_trunc = voxel_size * 2
# print("using aabb")
assert self.aabb is not None # as in lara.
center = self.aabb.mean(0)
radius = np.linalg.norm(self.aabb[1] - self.aabb[0]) * 0.5
voxel_size = radius / 160 # less holes
sdf_trunc = voxel_size * 12
print("using aabb")
volume = o3d.pipelines.integration.ScalableTSDFVolume(
voxel_length= voxel_size,
sdf_trunc=sdf_trunc,
color_type=o3d.pipelines.integration.TSDFVolumeColorType.RGB8
)
print("Running tsdf volume integration ...")
print(f'voxel_size: {voxel_size}')
print(f'sdf_trunc: {sdf_trunc}')
print(f'depth_truc: {depth_trunc}')
# render_reference = th.load('eval_pose.pt', map_location='cpu').numpy()
# ! use uni_mesh_path, from Lara, Chen et al, ECCV 24'
# '''
# for i, cam_o3d in tqdm(enumerate(to_cam_open3d(self.viewpoint_stack)), desc="TSDF integration progress"):
for i, cam in tqdm(enumerate(cam_pathes), desc="TSDF integration progress"):
# rgb = self.rgbmaps[i]
# depth = self.depthmaps[i]
cam = self.c_to_3dgs_format(cam)
cam_o3d = to_cam_open3d_compat(cam)
rgb = rgbmaps[i][0]
depth = depthmaps[i][0]
alpha = alpha_maps[i][0]
# if we have mask provided, use it
# if mask_backgrond and (self.viewpoint_stack[i].gt_alpha_mask is not None):
# depth[(self.viewpoint_stack[i].gt_alpha_mask < 0.5)] = 0
depth[(alpha < alpha_thres)] = 0
if self.aabb is not None:
campos = cam['cam_pos'].cpu().numpy()
depth_trunc = np.linalg.norm(campos - center, axis=-1) + radius
# make open3d rgbd
rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(
o3d.geometry.Image(np.asarray(np.clip(rgb.permute(1,2,0).cpu().numpy(), 0.0, 1.0) * 255, order="C", dtype=np.uint8)),
o3d.geometry.Image(np.asarray(depth.permute(1,2,0).cpu().numpy(), order="C")),
depth_trunc = depth_trunc,
convert_rgb_to_intensity=False,
depth_scale = 1.0
)
volume.integrate(rgbd, intrinsic=cam_o3d.intrinsic, extrinsic=cam_o3d.extrinsic)
mesh = volume.extract_triangle_mesh()
return mesh
@th.inference_mode()
def render_gs_video_given_latent(self,
planes,
rec_model,
name_prefix='0',
save_img=False,
render_reference=None,
export_mesh=False,
output_dir=None,
for_fid=False,):
if output_dir is None:
output_dir = logger.get_dir()
batch_size, L, C = planes.shape
# ddpm_latent = { self.latent_name: planes[..., :-3] * self.feat_scale_factor.to(planes), # kl-reg latent
# 'query_pcd_xyz': self.pcd_unnormalize_fn(planes[..., -3:]) }
# ddpm_latent = { self.latent_name: self.unnormalize_kl_feat(planes[..., :-3]), # kl-reg latent
# ddpm_latent = { self.latent_name: planes[..., :-3], # kl-reg latent
# 'query_pcd_xyz': self.unnormalize_pcd_act(planes[..., -3:]) }
ddpm_latent = { self.latent_name: planes[..., :-3], # kl-reg latent
'query_pcd_xyz': planes[..., -3:]}
ddpm_latent.update(rec_model(latent=ddpm_latent, behaviour='decode_gs_after_vae_no_render'))
# ! editing debug, raw scaling
# for beacon
# edited_fps_xyz[..., 2] *= 1.5
# edited_fps_xyz[..., :2] *= 0.75
# z_mask = edited_fps_xyz[..., 2] > 0
# edited_fps_xyz[..., 2] *= 1.25 # only apply to upper points
# z_dim_coord = edited_fps_xyz[..., 2]
# edited_fps_xyz[..., 2] = th.where(z_dim_coord>0, z_dim_coord*1.25, z_dim_coord)
# edited_fps_xyz[..., :2] *= 0.6
fine_scale = 'gaussians_upsampled_3'
# ddpm_latent[fine_scale][..., :2] *= 1.5
# ddpm_latent[fine_scale][..., 2:3] *= 0.75
# ddpm_latent[fine_scale][..., :2] *= 3
# ddpm_latent[fine_scale][..., 2:3] *= 0.75
# z_dim_coord = ddpm_latent[fine_scale][..., 2]
# ddpm_latent[fine_scale][..., 2] = th.where(z_dim_coord>0.24, z_dim_coord+0.1, z_dim_coord)
# pcu.save_mesh_v(f'{output_dir}/gaussian.ply', ddpm_latent['gaussians_upsampled'][0, ..., :3].cpu().numpy())
# fps-downsampling?
# pred_gaussians_xyz = ddpm_latent['gaussians_upsampled_3'][..., :3]
fine_gs = ddpm_latent[fine_scale]
fine_gs_numpy = fine_gs.cpu().numpy()
vtx = np.transpose(rotation_matrix_x(-90) @ np.transpose(fine_gs_numpy[0, :, :3])) # for gradio visualization
# vtx = vtx @ rotation_matrix_z(np.pi).T
vtx = vtx @ rotation_matrix_y(np.pi).T
cloud = trimesh.PointCloud(vtx, colors=fine_gs_numpy[0, :, 10:13])
# Save the point cloud to an OBJ file
rgb_xyz_path_forgradio = f'{output_dir}/{name_prefix}-gaussian-pcd.glb' # gradio only accepts glb for visualization
_ = cloud.export(rgb_xyz_path_forgradio)
rgb_xyz_path_formeshlab = f'{output_dir}/{name_prefix}-gaussian-pcd.ply' # for meshlab visualization
_ = cloud.export(rgb_xyz_path_formeshlab)
# K=4096
# query_pcd_xyz, fps_idx = pytorch3d.ops.sample_farthest_points(
# pred_gaussians_xyz, K=K,
# # random_start_point=False) # B self.latent_num
# random_start_point=True) # B self.latent_num
# pcu.save_mesh_v(f'{output_dir}/{name_prefix}-gaussian-{K}.ply', query_pcd_xyz[0].cpu().numpy())
np.save(f'{output_dir}/{name_prefix}-gaussian.npy', fine_gs_numpy)
video_path = f'{output_dir}/{name_prefix}-gs.mp4'
# return None, None
try:
# video_out = imageio.get_writer(
# f'{output_dir}/gs_{name_prefix}.mp4',
# mode='I',
# fps=15,
# codec='libx264')
video_out = imageio.get_writer(
video_path,
mode='I',
fps=15,
codec='libx264')
except Exception as e:
logger.log(e)
# return # some caption are too tired and cannot be parsed as file name
# !for FID
''' # if for uniform FID rendering. Will not adopt this later.
azimuths = []
elevations = []
frame_number = 10
for i in range(frame_number): # 1030 * 5 * 10, for FID 50K
azi, elevation = sample_uniform_cameras_on_sphere()
# azi, elevation = azi[0] / np.pi * 180, elevation[0] / np.pi * 180
# azi, elevation = azi[0] / np.pi * 180, 0
azi, elevation = azi[0] / np.pi * 180, (elevation[0]-np.pi*0.5) / np.pi * 180 # [-0.5 pi, 0.5 pi]
azimuths.append(azi)
elevations.append(elevation)
azimuths = np.array(azimuths)
elevations = np.array(elevations)
# azimuths = np.array(list(range(0,360,30))).astype(float)
# frame_number = azimuths.shape[0]
# elevations = np.array([10]*azimuths.shape[0]).astype(float)
zero123pp_pose, _ = generate_input_camera(1.8, [[elevations[i], azimuths[i]] for i in range(frame_number)], fov=30)
K = th.Tensor([1.3889, 0.0000, 0.5000, 0.0000, 1.3889, 0.5000, 0.0000, 0.0000, 0.0039]).to(zero123pp_pose) # keeps the same
render_reference = th.cat([zero123pp_pose.reshape(frame_number,-1), K.unsqueeze(0).repeat(frame_number,1)], dim=-1).cpu().numpy()
'''
assert render_reference is not None
# render_reference = th.load('eval_pose.pt', map_location='cpu').numpy()[:24]
# rand_start_idx = random.randint(0,2)
# render_reference = render_reference[rand_start_idx::3] # randomly render 8 views, maintain fixed azimuths
# assert len(render_reference)==8
# assert render_reference is None
# render_reference = self.eval_data # compat
# else: # use train_traj
# for key in ['ins', 'bbox', 'caption']:
# if key in render_reference:
# render_reference.pop(key)
# render_reference = [ { k:v[idx:idx+1] for k, v in render_reference.items() } for idx in range(40) ]
all_rgbs, all_depths, all_alphas = [], [], []
# for i, batch in enumerate(tqdm(self.eval_data)):
for i, micro_c in enumerate(tqdm(render_reference)):
# micro = {
# k: v.to(dist_util.dev()) if isinstance(v, th.Tensor) else v
# for k, v in batch.items()
# }
# c = self.eval_data.post_process.c_to_3dgs_format(micro_c)
c = self.c_to_3dgs_format(micro_c)
for k in c.keys(): # to cuda
if isinstance(c[k], th.Tensor) and k != 'tanfov':
c[k] = c[k].unsqueeze(0).unsqueeze(0).to(dist_util.dev()) # actually, could render 40 views together.
c['tanfov'] = th.tensor(c['tanfov']).to(dist_util.dev())
pred = rec_model(
img=None,
c=c, # TODO, to dict
latent=ddpm_latent, # render gs
behaviour='triplane_dec',
bg_color=self.gs_bg_color,
render_all_scale=True, # for better visualization
)
# ! if visualizing a single scale
fine_scale_key = list(pred.keys())[-1]
# pred = pred[fine_scale_key]
# for k in pred.keys():
# pred[k] = einops.rearrange(pred[k], 'B V ... -> (B V) ...') # merge
# pred_vis = self._make_vis_img(pred)
# vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
# vis = vis * 127.5 + 127.5
# vis = vis.clip(0, 255).astype(np.uint8)
# # if not save_img:
# for j in range(vis.shape[0]
# ): # ! currently only export one plane at a time
# video_out.append_data(vis[j])
# save multi-scale rendering
all_rgbs.append(einops.rearrange(pred[fine_scale_key]['image'], 'B V ... -> (B V) ...'))
all_depths.append(einops.rearrange(pred[fine_scale_key]['depth'], 'B V ... -> (B V) ...'))
all_alphas.append(einops.rearrange(pred[fine_scale_key]['alpha'], 'B V ... -> (B V) ...'))
all_pred_vis = {}
# for key in pred.keys():
for key in ['gaussians_base', fine_scale_key]: # only show two LoDs
pred_scale = pred[key] # only show finest result here
for k in pred_scale.keys():
pred_scale[k] = einops.rearrange(pred_scale[k], 'B V ... -> (B V) ...') # merge
pred_vis = self._make_vis_img(pred_scale, ignore_depth=True)
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
vis = vis * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
all_pred_vis[key] = vis
# all_pred_vis_concat = np.concatenate([cv2.resize(all_pred_vis[k][0], (384*3, 384)) for k in ['gaussians_base', 'gaussians_upsampled', 'gaussians_upsampled_2']], axis=0)
# all_pred_vis_concat = np.concatenate([cv2.resize(all_pred_vis[k][0], (256*3, 256)) for k in ['gaussians_base', 'gaussians_upsampled', 'gaussians_upsampled_2']], axis=0)
# all_pred_vis_concat = np.concatenate([cv2.resize(all_pred_vis[k][0], (384*len(all_pred_vis.keys()), 384)) for k in all_pred_vis.keys()], axis=0)
# all_pred_vis_concat = np.concatenate([cv2.resize(all_pred_vis[k][0], (384*3, 384)) for k in all_pred_vis.keys()], axis=0)
# all_pred_vis_concat = np.concatenate([cv2.resize(all_pred_vis[k][0], (512*3, 512)) for k in all_pred_vis.keys()], axis=0)
all_pred_vis_concat = np.concatenate([cv2.resize(all_pred_vis[k][0], (512*2, 512)) for k in all_pred_vis.keys()], axis=0)
video_out.append_data(all_pred_vis_concat)
if save_img: # for fid
for idx in range(len(all_rgbs)):
sampled_img = Image.fromarray(
(all_rgbs[idx][0].permute(1, 2, 0).cpu().numpy() *
255).clip(0, 255).astype(np.uint8))
sampled_img.save(os.path.join(output_dir,f'{name_prefix}-{idx}.jpg'))
# if not save_img:
video_out.close()
print('logged video to: ',
f'{output_dir}/{name_prefix}.mp4')
del video_out, pred, pred_vis, vis
# return all_rgbs, all_depths, all_alphas
return all_rgbs, all_depths, all_alphas, video_path, rgb_xyz_path_forgradio
@th.no_grad()
def _make_vis_img(self, pred, ignore_depth=False):
gen_img = pred['image_raw']
rend_normal = pred['rend_normal']
# if True:
if not ignore_depth:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
pred_depth = pred_depth.cpu()[0].permute(1, 2, 0).numpy()
pred_depth = (plt.cm.viridis(pred_depth[..., 0])[..., :3]) * 2 - 1
pred_depth = th.from_numpy(pred_depth).to(
pred['image_raw'].device).permute(2, 0, 1).unsqueeze(0)
pred_vis = th.cat(
[
gen_img,
rend_normal,
pred_depth,
],
dim=-1) # B, 3, H, W
else:
pred_vis = th.cat(
[
gen_img,
rend_normal,
],
dim=-1) # B, 3, H, W
return pred_vis
def _set_grad_flag(self):
requires_grad(self.ddpm_model, True) #
@th.inference_mode()
def sample_and_save(self, batch_c, ucg_keys, num_samples, camera, save_img, idx=0, save_dir='', export_mesh=False, stage1_idx=0, cfg_scale=4.0, seed=42):
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
c, uc = self.conditioner.get_unconditional_conditioning(
batch_c,
force_uc_zero_embeddings=ucg_keys
if len(self.conditioner.embedders) > 0 else [],
)
sampling_kwargs = {
'cfg_scale': cfg_scale, # default value in SiT
'seed': seed,
}
N = num_samples # hard coded, to update
z_shape = (N, 768, self.ddpm_model.in_channels)
for k in c:
if isinstance(c[k], th.Tensor):
# c[k], uc[k] = map(lambda y: y[k][:N].to(dist_util.dev()),
# (c, uc))
assert c[k].shape[0] == 1 # ! support batch inference
c[k], uc[k] = map(lambda y: y[k].repeat_interleave(N, 0).to(dist_util.dev()),
(c, uc)) # support bs>1 sampling given a condition
samples = self.sample(c,
shape=z_shape[1:],
uc=uc,
batch_size=N,
**sampling_kwargs)
# ! get c
if save_dir == '':
save_dir = logger.get_dir()
if 'img' in self.cond_key:
# img_save_path = f'{save_dir}/{idx}_imgcond.jpg'
img_save_path = f'{save_dir}/{idx}/imgcond.jpg'
os.makedirs(f'{save_dir}/{idx}', exist_ok=True)
if 'c' in self.cond_key:
torchvision.utils.save_image(batch_c['img-c']['img'][0], img_save_path, value_range=(-1,1), normalize=True, padding=0) # torch.Size([24, 6, 3, 256, 256])
else:
torchvision.utils.save_image(batch_c['img'], img_save_path, value_range=(-1,1), normalize=True, padding=0)
assert camera is not None
# batch = {'c': camera.clone()}
# rendering
for i in range(samples.shape[0]):
th.cuda.empty_cache()
if self.cond_key in ['caption']:
name_prefix = f'{batch_c["caption"]}_sample-{stage1_idx}-{i}'
else:
# ! render sampled latent
# name_prefix = f'{idx}_sample-{i}'
name_prefix = f'{idx}/sample-{stage1_idx}-{i}'
# if self.cond_key in ['caption', 'img-c']:
cam_pathes = uni_mesh_path(10)
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
# # ! todo, transform to gs camera
if self.latent_key != 'latent': # normalized-xyz
pcd_export_dir = f'{save_dir}/{name_prefix}.glb' # pcu fails on py=3.9
vtx = self.unnormalize_pcd_act(samples[i]).detach().cpu().float().numpy()
cloud = trimesh.PointCloud(vtx @ rotation_matrix_x(-90).T, colors=np.ones_like(vtx)*0.1) # since white background
_ = cloud.export(pcd_export_dir) # for gradio display
logger.log(f'stage-1 glb point cloud saved to {pcd_export_dir}')
pcd_export_dir_forstage1 = f'{save_dir}/{name_prefix}.ply'
pcu.save_mesh_v(pcd_export_dir_forstage1, self.unnormalize_pcd_act(samples[i]).detach().cpu().float().numpy())
logger.log(f'point cloud saved to {pcd_export_dir}')
return pcd_export_dir
else:
# ! editing debug
all_rgbs, all_depths, all_alphas, video_path, rgb_xyz_path = self.render_gs_video_given_latent(
th.cat([samples[i:i+1], batch_c['fps-xyz'][0:1]], dim=-1), # ! debugging xyz diffusion
self.rec_model, # compatible with join_model
name_prefix=name_prefix,
save_img=save_img,
render_reference=cam_pathes,
export_mesh=False,)
# for_fid=False)
if export_mesh:
post_mesh_path=self.export_mesh_from_2dgs(all_rgbs, all_depths, all_alphas, cam_pathes, idx, i)
else:
post_mesh_path = ''
return video_path, rgb_xyz_path, post_mesh_path
# mesh = self.extract_mesh_bounded(all_rgbs, all_depths, all_alphas, cam_pathes, voxel_size=voxel_size, sdf_trunc=sdf_trunc, depth_trunc=depth_trunc, mask_backgrond=False)
@th.inference_mode()
def eval_and_export(
self,
prompt="Yellow rubber duck",
# use_ddim=False,
# unconditional_guidance_scale=1.0,
save_img=False,
use_train_trajectory=False,
camera=None,
num_samples=1,
stage_1_output_dir='',
num_instances=1,
export_mesh=False,
):
self.ddpm_model.eval()
args = dnnlib.EasyDict(
dict(
batch_size=1,
image_size=self.diffusion_input_size,
denoise_in_channels=self.rec_model.decoder.triplane_decoder.
out_chans, # type: ignore
clip_denoised=False,
class_cond=False))
model_kwargs = {}
uc = None
log = dict()
ucg_keys = [self.cond_key] # i23d
def sample_and_save(batch_c, idx=0):
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
c, uc = self.conditioner.get_unconditional_conditioning(
batch_c,
force_uc_zero_embeddings=ucg_keys
if len(self.conditioner.embedders) > 0 else [],
)
sampling_kwargs = {}
N = num_samples # hard coded, to update
z_shape = (N, 768, self.ddpm_model.in_channels)
for k in c:
if isinstance(c[k], th.Tensor):
# c[k], uc[k] = map(lambda y: y[k][:N].to(dist_util.dev()),
# (c, uc))
assert c[k].shape[0] == 1 # ! support batch inference
c[k], uc[k] = map(lambda y: y[k].repeat_interleave(N, 0).to(dist_util.dev()),
(c, uc)) # support bs>1 sampling given a condition
samples = self.sample(c,
shape=z_shape[1:],
uc=uc,
batch_size=N,
**sampling_kwargs)
# ! get c
if 'img' in self.cond_key:
img_save_path = f'{logger.get_dir()}/{idx}_imgcond.jpg'
if 'c' in self.cond_key:
torchvision.utils.save_image(batch_c['img-c']['img'][0], img_save_path, value_range=(-1,1), normalize=True, padding=0) # torch.Size([24, 6, 3, 256, 256])
else:
torchvision.utils.save_image(batch_c['img'], img_save_path, value_range=(-1,1), normalize=True, padding=0)
assert camera is not None
batch = {'c': camera.clone()}
# rendering
for i in range(samples.shape[0]):
th.cuda.empty_cache()
if self.cond_key in ['caption']:
name_prefix = f'{batch_c["caption"]}_sample-{idx}-{i}'
else:
# ! render sampled latent
name_prefix = f'{idx}_sample-{i}'
# if self.cond_key in ['caption', 'img-c']:
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
# # ! todo, transform to gs camera
if self.latent_key != 'latent': # normalized-xyz
pcu.save_mesh_v( f'{logger.get_dir()}/{name_prefix}.ply', self.unnormalize_pcd_act(samples[i]).detach().cpu().float().numpy())
logger.log(f'point cloud saved to {logger.get_dir()}/{name_prefix}.ply')
else:
# ! editing debug
all_rgbs, all_depths, all_alphas = self.render_gs_video_given_latent(
# samples[i:i+1].to(self.dtype), # default version
# th.cat([gt_kl_latent.to(samples), gt_xyz.to(samples)], dim=-1),
# ! xyz-cond kl feature gen:
# th.cat([samples[i:i+1], batch_c['fps-xyz'][i:i+1]], dim=-1), # ! debugging xyz diffusion
th.cat([samples[i:i+1], batch_c['fps-xyz'][0:1]], dim=-1), # ! debugging xyz diffusion
# ! xyz debugging
# th.cat([gt_kl_latent.to(samples), samples[i:i+1]], dim=-1), # ! debugging xyz diffusion
# th.cat([samples[i:i+1], gt_xyz.to(samples), ], dim=-1) # ! debugging kl feature diffusion
self.rec_model, # compatible with join_model
name_prefix=name_prefix,
save_img=save_img,
render_reference=batch,
export_mesh=False)
if export_mesh:
self.export_mesh_from_2dgs(all_rgbs, all_depths, idx, i)
if self.cond_key == 'caption':
assert prompt != ''
batch_c = {self.cond_key: prompt}
if self.latent_key == 'latent': # t23d, stage-2
for i in range(2): # 8 * num_samples here
fps_xyz = torch.from_numpy(pcu.load_mesh_v(f'{stage_1_output_dir}/{prompt}_sample-0-{i}.ply') ).clip(-0.45,0.45).unsqueeze(0)
# ! if editing, change the latent points accordingly.
# edited_fps_xyz = fps_xyz.clone() # B N 3
# z_dim_coord = edited_fps_xyz[..., 2]
# edited_fps_xyz[..., 2] = th.where(z_dim_coord>0.24, z_dim_coord+0.075, z_dim_coord)
batch_c.update({
'fps-xyz': fps_xyz.to(self.dtype).to(dist_util.dev())
# 'fps-xyz': edited_fps_xyz.to(self.dtype).to(dist_util.dev())
})
sample_and_save(batch_c, idx=i)
else:
sample_and_save(batch_c)
@th.inference_mode()
def eval_t23d_and_export(
self,
prompt="Yellow rubber duck",
# use_ddim=False,
# unconditional_guidance_scale=1.0,
save_img=False,
use_train_trajectory=False,
camera=None,
num_samples=1,
stage_1_output_dir='',
num_instances=1,
export_mesh=False,
):
self.ddpm_model.eval()
args = dnnlib.EasyDict(
dict(
batch_size=1,
image_size=self.diffusion_input_size,
denoise_in_channels=self.rec_model.decoder.triplane_decoder.
out_chans, # type: ignore
clip_denoised=False,
class_cond=False))
model_kwargs = {}
uc = None
log = dict()
ucg_keys = [self.cond_key] # i23d
assert self.cond_key == 'caption' and prompt != ''
batch_c = {self.cond_key: prompt}
if self.latent_key == 'latent': # t23d, stage-2
fps_xyz = torch.from_numpy(pcu.load_mesh_v(f'{stage_1_output_dir}/{prompt}_sample-0.ply') ).clip(-0.45,0.45).unsqueeze(0)
batch_c.update({
'fps-xyz': fps_xyz.to(self.dtype).to(dist_util.dev())
})
self.sample_and_save(batch_c, ucg_keys, num_samples, camera,)
@th.inference_mode()
def eval_i23d_and_export_gradio(
self,
inp_img,
seed=42,
cfg_scale=4.0, # default value in neural ode
save_img=False,
**kwargs,
):
# logger.log(
# unconditional_guidance_scale,
# seed,
# mesh_size,
# mesh_thres,
# )
sampling_kwargs = {
'cfg_scale': cfg_scale, # default value in SiT
'seed': seed,
}
camera = th.load('assets/objv_eval_pose.pt', map_location=dist_util.dev())[:24]
inp_img = th.from_numpy(inp_img).permute(2,0,1).unsqueeze(0) / 127.5 - 1 # to [-1,1]
num_samples=1
export_mesh=True
# self.ddpm_model.eval()
# args = dnnlib.EasyDict(
# dict(
# batch_size=1,
# image_size=self.diffusion_input_size,
# denoise_in_channels=self.rec_model.decoder.triplane_decoder.
# out_chans, # type: ignore
# clip_denoised=False,
# class_cond=False))
# model_kwargs = {}
ucg_keys = [self.cond_key] # i23d
ins_name = 'house2-input' # for debug here
if self.cond_key == 'img-xyz': # stage-2
i = 0 # for gradio only
# for i in range(1):
stage_1_output_dir="./logs/i23d/stage-1/dino_img/"
stage1_pcd_output_path = f'{stage_1_output_dir}/{ins_name}/sample-0-{i}.ply'
fps_xyz = trimesh.load(stage1_pcd_output_path).vertices # pcu may fail on py=3.9
fps_xyz = torch.from_numpy(fps_xyz).clip(-0.45,0.45).unsqueeze(0)
logger.log('loading stage-1 point cloud from: ', stage1_pcd_output_path)
# fps_xyz = None # ! TODO, load from local directory
# batch_c = {
# 'img': batch['img'][0:1].to(self.dtype).to(dist_util.dev()),
# 'fps-xyz': fps_xyz[0:1].to(self.dtype).to(dist_util.dev()),
# }
batch_c = {'img': inp_img.to(dist_util.dev()).to(self.dtype),
'fps-xyz': fps_xyz[0:1].to(self.dtype).to(dist_util.dev())}
# no need to return here?
video_path, rgb_xyz_path, post_mesh_path = self.sample_and_save(batch_c, ucg_keys, num_samples, camera, save_img, idx=ins_name, export_mesh=export_mesh, stage1_idx=i, **sampling_kwargs) # type: ignore
# video_path = './logs/i23d/stage-2/dino_img/house2-input/sample-0-0-gs.mp4'
# rgb_xyz_path = './logs/i23d/stage-2/dino_img/low-poly-model-of-a-green-pine-tree,-also-resembling-a-Christmas-tree.-vc.ply'
assert post_mesh_path != ''
return video_path, rgb_xyz_path, post_mesh_path
else: # stage-1 data
# batch_c = {self.cond_key: batch[self.cond_key][0:1].to(dist_util.dev()).to(self.dtype), }
# raise NotImplementedError('stage-2 only')
batch_c = {'img': inp_img.to(dist_util.dev()).to(self.dtype)}
pcd_export_dir = self.sample_and_save(batch_c, ucg_keys, num_samples, camera, save_img, idx=ins_name, export_mesh=export_mesh, **sampling_kwargs) # type: ignore
return pcd_export_dir
@th.inference_mode()
def eval_i23d_and_export(
self,
prompt="Yellow rubber duck",
# use_ddim=False,
unconditional_guidance_scale=4.0,
save_img=False,
seed=42,
# cfg_scale=4.0, # default value in neural ode
camera=None,
num_samples=1,
stage_1_output_dir='',
# num_instances=1,
export_mesh=False,
):
self.ddpm_model.eval()
# args = dnnlib.EasyDict(
# dict(
# batch_size=1,
# image_size=self.diffusion_input_size,
# denoise_in_channels=self.rec_model.decoder.triplane_decoder.
# out_chans, # type: ignore
# clip_denoised=False,
# class_cond=False))
# model_kwargs = {}
sampling_kwargs = {
'cfg_scale': unconditional_guidance_scale, # default value in SiT
'seed': seed,
}
uc = None
log = dict()
ucg_keys = [self.cond_key] # i23d
for idx, batch in enumerate(tqdm(self.data)):
ins = batch['ins'][0]
# obj_folder, _, frame = ins.split('/')
ins = ins.split('/')
# obj_folder, frame = ins[0], ins[-1] # for gso
if len(ins) >2:
if ins[1] == 'render_mvs_25': # gso
obj_folder, frame = ins[0], int(ins[-1].split('.')[0])
ins_name = f'{obj_folder}/{str(frame)}'
else:
obj_folder, frame = os.path.join(ins[1], ins[2]), ins[-1] # for objv
frame = int(frame.split('.')[0])
ins_name = f'{obj_folder}/{str(frame)}'
else: # folder of images, e.g., instantmesh
ins_name = ins[0].split('.')[0]
# pcd_export_dir = f'{logger.get_dir()}/{ins_name}/sample-0.ply'
# if os.path.exists(pcd_export_dir):
# continue
#! debugging, get GT xyz and KL latent for disentangled debugging
if self.cond_key == 'img-c': # mv23d
prompt = batch['caption'][0:1]
batch_c = {
self.cond_key: {
'img': batch['mv_img'][0:1].to(self.dtype).to(dist_util.dev()),
'c': batch['c'][0:1].to(self.dtype).to(dist_util.dev()),
},
'img': batch['img'][0:1].to(self.dtype).to(dist_util.dev()),
'caption': prompt,
}
if self.latent_key == 'latent': # stage-2
fps_xyz = torch.from_numpy(pcu.load_mesh_v(f'{stage_1_output_dir}/{idx}_sample-0.ply') ).clip(-0.45,0.45).unsqueeze(0)
# fps_xyz = torch.from_numpy(pcu.load_mesh_v(f'{stage_1_output_dir}/sample-0.ply') ).clip(-0.45,0.45).unsqueeze(0)
batch_c.update({
'fps-xyz': fps_xyz[0:1].to(self.dtype).to(dist_util.dev()),
})
# elif self.cond_key == 'img-caption':
# batch_c = {'caption': prompt, 'img': batch['img'].to(dist_util.dev()).to(self.dtype)}
elif self.cond_key == 'img-xyz': # stage-2
for i in range(2):
stage1_pcd_output_path = f'{stage_1_output_dir}/{ins_name}/sample-0-{i}.ply'
fps_xyz = trimesh.load(stage1_pcd_output_path).vertices # pcu may fail on py=3.9
fps_xyz = torch.from_numpy(fps_xyz).clip(-0.45,0.45).unsqueeze(0)
# fps_xyz = None # ! TODO, load from local directory
batch_c = {
'img': batch['img'][0:1].to(self.dtype).to(dist_util.dev()),
'fps-xyz': fps_xyz[0:1].to(self.dtype).to(dist_util.dev()),
}
self.sample_and_save(batch_c, ucg_keys, num_samples, camera, save_img, idx=ins_name, export_mesh=export_mesh, stage1_idx=i,**sampling_kwargs) # type: ignore
else: # stage-1 data
batch_c = {self.cond_key: batch[self.cond_key][0:1].to(dist_util.dev()).to(self.dtype), }
if self.cond_key == 'caption' and self.latent_key == 'latent': # t23d, stage-2
fps_xyz = torch.from_numpy(pcu.load_mesh_v(f'{stage_1_output_dir}/{idx}_sample-0.ply') ).clip(-0.45,0.45).unsqueeze(0)
batch_c.update({
'fps-xyz': fps_xyz.to(self.dtype).to(dist_util.dev())
})
# save_dir = f'{logger.get_dir()}/{ins}'
# os.mkdir(save_dir, exists_ok=True, parents=True)
# self.sample_and_save(batch_c, ucg_keys, num_samples, camera, save_img, idx=f'{idx}-{ins}', export_mesh=export_mesh)
self.sample_and_save(batch_c, ucg_keys, num_samples, camera, save_img, idx=ins_name, export_mesh=export_mesh,**sampling_kwargs) # type: ignore
gc.collect()
def get_source_cw2wT(self, source_cameras_view_to_world):
return matrix_to_quaternion(
source_cameras_view_to_world[:3, :3].transpose(0, 1))
def c_to_3dgs_format(self, pose):
# TODO, switch to torch version (batched later)
c2w = pose[:16].reshape(4, 4) # 3x4
# ! load cam
w2c = np.linalg.inv(c2w)
R = np.transpose(
w2c[:3, :3]) # R is stored transposed due to 'glm' in CUDA code
T = w2c[:3, 3]
fx = pose[16]
FovX = focal2fov(fx, 1)
FovY = focal2fov(fx, 1)
tanfovx = math.tan(FovX * 0.5)
tanfovy = math.tan(FovY * 0.5)
assert tanfovx == tanfovy
trans = np.array([0.0, 0.0, 0.0])
scale = 1.0
world_view_transform = torch.tensor(getWorld2View2(R, T, trans,
scale)).transpose(
0, 1)
projection_matrix = getProjectionMatrix(znear=self.znear,
zfar=self.zfar,
fovX=FovX,
fovY=FovY).transpose(0, 1)
full_proj_transform = (world_view_transform.unsqueeze(0).bmm(
projection_matrix.unsqueeze(0))).squeeze(0)
camera_center = world_view_transform.inverse()[3, :3]
view_world_transform = torch.tensor(getView2World(R, T, trans,
scale)).transpose(
0, 1)
# item.update(viewpoint_cam=[viewpoint_cam])
c = {}
c["source_cv2wT_quat"] = self.get_source_cw2wT(view_world_transform)
c.update(
projection_matrix=projection_matrix, # K
cam_view=world_view_transform, # world_view_transform
cam_view_proj=full_proj_transform, # full_proj_transform
cam_pos=camera_center,
tanfov=tanfovx, # TODO, fix in the renderer
# orig_c2w=c2w,
# orig_w2c=w2c,
orig_pose=torch.from_numpy(pose),
orig_c2w=torch.from_numpy(c2w),
orig_w2c=torch.from_numpy(w2c),
# tanfovy=tanfovy,
)
return c # dict for gs rendering
class FlowMatchingEngine_gs_clay(FlowMatchingEngine_gs):
def __init__(
self,
*,
rec_model,
denoise_model,
diffusion,
sde_diffusion,
control_model,
control_key,
only_mid_control,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
resume_cldm_checkpoint=None,
use_fp16=False,
fp16_scale_growth=0.001,
schedule_sampler=None,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
ignore_resume_opt=False,
freeze_ae=False,
denoised_ae=True,
triplane_scaling_divider=10,
use_amp=False,
diffusion_input_size=224,
normalize_clip_encoding=False,
scale_clip_encoding=1,
cfg_dropout_prob=0,
cond_key='img_sr',
use_eos_feature=False,
compile=False,
snr_type='lognorm',
**kwargs):
super().__init__(rec_model=rec_model,
denoise_model=denoise_model,
diffusion=diffusion,
sde_diffusion=sde_diffusion,
control_model=control_model,
control_key=control_key,
only_mid_control=only_mid_control,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
resume_cldm_checkpoint=resume_cldm_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
ignore_resume_opt=ignore_resume_opt,
freeze_ae=freeze_ae,
denoised_ae=denoised_ae,
triplane_scaling_divider=triplane_scaling_divider,
use_amp=use_amp,
diffusion_input_size=diffusion_input_size,
normalize_clip_encoding=normalize_clip_encoding,
scale_clip_encoding=scale_clip_encoding,
cfg_dropout_prob=cfg_dropout_prob,
cond_key=cond_key,
use_eos_feature=use_eos_feature,
compile=compile,
snr_type=snr_type,
**kwargs)
# self._init_new_ca_weight() # after ckpt loading
def _set_grad_flag(self):
# unfree CA only
requires_grad(self.ddpm_model, True) #
# for k, v in self.ddpm_model.named_parameters():
# # if 'cross_attn_dino' in k:
# if 'mv' in k: # for mv dino
# v.requires_grad_(True)
# if self.step == 0:
# logger.log(k)
# else:
# v.requires_grad_(False)
def _init_new_ca_weight(self):
blks_to_copy = ['cross_attn_dino', 'prenorm_ca_dino']
for blk in self.ddpm_model.blocks:
for param_name in blks_to_copy:
try:
getattr(blk, param_name.replace('dino', 'dino_mv')).load_state_dict(getattr(blk, param_name).state_dict())
except Exception as e:
logger.log(e) # some key misalignment