Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Train a diffusion model on images. | |
""" | |
# import imageio | |
from pathlib import Path | |
import torchvision | |
import kornia | |
import lz4.frame | |
import gzip | |
import random | |
import json | |
import sys | |
import os | |
import lmdb | |
from tqdm import tqdm | |
sys.path.append('.') | |
import torch.distributed as dist | |
import pytorch3d.ops | |
import pickle | |
import traceback | |
from PIL import Image | |
import torch as th | |
if th.cuda.is_available(): | |
from xformers.triton import FusedLayerNorm as LayerNorm | |
import torch.multiprocessing as mp | |
import lzma | |
import webdataset as wds | |
import numpy as np | |
import point_cloud_utils as pcu | |
from torch.utils.data import DataLoader, Dataset | |
import imageio.v3 as iio | |
import argparse | |
import dnnlib | |
from guided_diffusion import dist_util, logger | |
from guided_diffusion.script_util import ( | |
args_to_dict, | |
add_dict_to_argparser, | |
) | |
# from nsr.train_util import TrainLoop3DRec as TrainLoop | |
from nsr.train_nv_util import TrainLoop3DRecNV, TrainLoop3DRec, TrainLoop3DRecNVPatch | |
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default | |
from datasets.shapenet import load_data, load_data_for_lmdb, load_eval_data, load_memory_data | |
from nsr.losses.builder import E3DGELossClass | |
from datasets.eg3d_dataset import init_dataset_kwargs | |
from nsr.volumetric_rendering.ray_sampler import RaySampler | |
# from .lmdb_create import encode_and_compress_image | |
def encode_and_compress_image(inp_array, is_image=False, compress=True): | |
# Read the image using imageio | |
# image = imageio.v3.imread(image_path) | |
# Convert the image to bytes | |
# with io.BytesIO() as byte_buffer: | |
# imageio.imsave(byte_buffer, image, format="png") | |
# image_bytes = byte_buffer.getvalue() | |
if is_image: | |
inp_bytes = iio.imwrite("<bytes>", inp_array, extension=".png") | |
else: | |
inp_bytes = inp_array.tobytes() | |
# Compress the image data using gzip | |
if compress: | |
# compressed_data = gzip.compress(inp_bytes) | |
compressed_data = lz4.frame.compress(inp_bytes) | |
return compressed_data | |
else: | |
return inp_bytes | |
from pdb import set_trace as st | |
import bz2 | |
# th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16 | |
def training_loop(args): | |
# def training_loop(args): | |
# dist_util.setup_dist(args) | |
# th.autograd.set_detect_anomaly(True) # type: ignore | |
th.autograd.set_detect_anomaly(False) # type: ignore | |
# https://blog.csdn.net/qq_41682740/article/details/126304613 | |
SEED = args.seed | |
# dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count()) | |
# logger.log(f"{args.local_rank=} init complete, seed={SEED}") | |
# th.cuda.set_device(args.local_rank) | |
th.cuda.empty_cache() | |
# * deterministic algorithms flags | |
th.cuda.manual_seed_all(SEED) | |
np.random.seed(SEED) | |
random.seed(SEED) | |
ray_sampler = RaySampler() | |
# logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) | |
logger.configure(dir=args.logdir) | |
logger.log("creating encoder and NSR decoder...") | |
# device = dist_util.dev() | |
# device = th.device("cuda", args.local_rank) | |
# shared eg3d opts | |
opts = eg3d_options_default() | |
logger.log("creating data loader...") | |
# let all processes sync up before starting with a new epoch of training | |
dist_util.synchronize() | |
# schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) | |
opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) | |
# opt.max_depth, opt.min_depth = args.rendering_kwargs.ray_end, args.rendering_kwargs.ray_start | |
# loss_class = E3DGELossClass(device, opt).to(device) | |
# writer = SummaryWriter() # TODO, add log dir | |
logger.log("training...") | |
def save_pcd_from_gs(lmdb_path, start_shard, wds_split): | |
""" | |
Convert a PyTorch dataset to LMDB format. | |
Parameters: | |
- dataset: PyTorch dataset | |
- lmdb_path: Path to store the LMDB database | |
""" | |
# ! read dataset path | |
# latent_dir = '/nas/shared/V2V/yslan/logs/nips23/Reconstruction/final/objav/vae/gs/infer-latents/768/8x8/animals/latent_dir/Animals' | |
latent_dir = '/nas/shared/V2V/yslan/logs/nips23/Reconstruction/final/objav/vae/gs/infer-latents/768/8x8/animals-gs-latent-dim=10-fullset/latent_dir' | |
ins_list = [] | |
for class_dir in os.listdir(latent_dir)[:]: | |
for dict_dir in os.listdir(os.path.join(latent_dir, class_dir))[:]: | |
for ins_dir in os.listdir(os.path.join(latent_dir, class_dir, dict_dir)): | |
ins_list.append(os.path.join(class_dir, dict_dir, ins_dir)) | |
K = 4096 # fps K | |
for idx, ins in enumerate(tqdm(ins_list)): | |
# sample_ins = sample.pop('ins') | |
pcd_path = Path(f'{logger.get_dir()}/fps-pcd/{ins}') | |
if (pcd_path / f'fps-{K}.ply').exists(): | |
continue | |
# ! load gaussians | |
gaussians = np.load(os.path.join(latent_dir,ins,'gaussians.npy')) | |
points = gaussians[0,:, 0:3] | |
# load opacity and scale | |
opacity = gaussians[0,:, 3:4] | |
# scale = gaussians[0,:, 4:6] | |
# colors = gaussians[0, :, 10:13] | |
opacity_mask = opacity < 0.005 # official threshold | |
high_opacity_points = points[~opacity_mask[..., 0]] | |
# high_opacity_colors = colors[~opacity_mask[..., 0]] | |
high_opacity_points = th.from_numpy(high_opacity_points).to(dist_util.dev()) | |
pcd_path.mkdir(parents=True, exist_ok=True) | |
try: | |
fps_points = pytorch3d.ops.sample_farthest_points( | |
high_opacity_points.unsqueeze(0), K=K)[0] | |
pcu.save_mesh_v( | |
str(pcd_path / f'fps-{K}.ply'), | |
fps_points[0].detach().cpu().numpy(), | |
) | |
assert (pcd_path / f'fps-{K}.ply').exists() | |
except Exception as e: | |
continue | |
print(pcd_path, 'save failed: ', e) | |
save_pcd_from_gs(os.path.join(logger.get_dir(), f'wds-%06d.tar'), | |
args.start_shard, args.wds_split) | |
def create_argparser(**kwargs): | |
# defaults.update(model_and_diffusion_defaults()) | |
defaults = dict( | |
seed=0, | |
dataset_size=-1, | |
trainer_name='input_rec', | |
use_amp=False, | |
overfitting=False, | |
num_workers=4, | |
image_size=128, | |
image_size_encoder=224, | |
iterations=150000, | |
anneal_lr=False, | |
lr=5e-5, | |
weight_decay=0.0, | |
lr_anneal_steps=0, | |
batch_size=1, | |
eval_batch_size=12, | |
microbatch=-1, # -1 disables microbatches | |
ema_rate="0.9999", # comma-separated list of EMA values | |
log_interval=50, | |
eval_interval=2500, | |
save_interval=10000, | |
resume_checkpoint="", | |
use_fp16=False, | |
fp16_scale_growth=1e-3, | |
data_dir="", | |
eval_data_dir="", | |
# load_depth=False, # TODO | |
logdir="/mnt/lustre/yslan/logs/nips23/", | |
# test warm up pose sampling training | |
objv_dataset=False, | |
pose_warm_up_iter=-1, | |
start_shard=0, | |
shuffle_across_cls=False, | |
wds_split=1, # out of 4 | |
) | |
defaults.update(encoder_and_nsr_defaults()) # type: ignore | |
defaults.update(loss_defaults()) | |
parser = argparse.ArgumentParser() | |
add_dict_to_argparser(parser, defaults) | |
return parser | |
if __name__ == "__main__": | |
# os.environ[ | |
# "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. | |
# os.environ["TORCH_CPP_LOG_LEVEL"]="INFO" | |
# os.environ["NCCL_DEBUG"]="INFO" | |
args = create_argparser().parse_args() | |
# args.local_rank = int(os.environ["LOCAL_RANK"]) | |
args.gpus = th.cuda.device_count() | |
opts = args | |
args.rendering_kwargs = rendering_options_defaults(opts) | |
# print(args) | |
with open(os.path.join(args.logdir, 'args.json'), 'w') as f: | |
json.dump(vars(args), f, indent=2) | |
# Launch processes. | |
print('Launching processes...') | |
# try: | |
training_loop(args) | |
# except KeyboardInterrupt as e: | |
# except Exception as e: | |
# # print(e) | |
# traceback.print_exc() | |
# dist_util.cleanup() # clean port and socket when ctrl+c | |