Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Train a diffusion model on images. | |
""" | |
import json | |
import sys | |
import os | |
sys.path.append('.') | |
# from dnnlib import EasyDict | |
import traceback | |
import torch as th | |
# from xformers.triton import FusedLayerNorm as LayerNorm | |
import torch.multiprocessing as mp | |
import torch.distributed as dist | |
import numpy as np | |
import argparse | |
import dnnlib | |
from guided_diffusion import dist_util, logger | |
from guided_diffusion.resample import create_named_schedule_sampler | |
from guided_diffusion.script_util import ( | |
args_to_dict, | |
add_dict_to_argparser, | |
continuous_diffusion_defaults, | |
control_net_defaults, | |
model_and_diffusion_defaults, | |
create_model_and_diffusion, | |
) | |
from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion | |
import nsr | |
import nsr.lsgm | |
# from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop | |
from datasets.eg3d_dataset import LMDBDataset_MV_Compressed_eg3d | |
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default, dataset_defaults | |
from datasets.shapenet import load_data, load_eval_data, load_memory_data | |
from nsr.losses.builder import E3DGELossClass | |
from torch_utils import legacy, misc | |
from torch.utils.data import Subset | |
from pdb import set_trace as st | |
from dnnlib.util import EasyDict, InfiniteSampler | |
# from .vit_triplane_train_FFHQ import init_dataset_kwargs | |
from datasets.eg3d_dataset import init_dataset_kwargs | |
th.backends.cudnn.enabled = True # https://zhuanlan.zhihu.com/p/635824460 | |
th.backends.cudnn.benchmark = True | |
from transport import create_transport, Sampler | |
from transport.train_utils import parse_transport_args | |
# from torch.utils.tensorboard import SummaryWriter | |
SEED = 0 | |
def training_loop(args): | |
# def training_loop(args): | |
logger.log("dist setup...") | |
# th.multiprocessing.set_start_method('spawn') | |
th.autograd.set_detect_anomaly(False) # type: ignore | |
# th.autograd.set_detect_anomaly(True) # type: ignore | |
# st() | |
th.cuda.set_device( | |
args.local_rank) # set this line to avoid extra memory on rank 0 | |
th.cuda.empty_cache() | |
th.cuda.manual_seed_all(SEED) | |
np.random.seed(SEED) | |
dist_util.setup_dist(args) | |
# st() # mark | |
th.backends.cuda.matmul.allow_tf32 = args.allow_tf32 | |
th.backends.cudnn.allow_tf32 = args.allow_tf32 | |
# st() | |
# logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) | |
logger.configure(dir=args.logdir) | |
logger.log("creating ViT encoder and NSR decoder...") | |
# st() # mark | |
device = dist_util.dev() | |
args.img_size = [args.image_size_encoder] | |
logger.log("creating model and diffusion...") | |
# * set denoise model args | |
if args.denoise_in_channels == -1: | |
args.diffusion_input_size = args.image_size_encoder | |
args.denoise_in_channels = args.out_chans | |
args.denoise_out_channels = args.out_chans | |
else: | |
assert args.denoise_out_channels != -1 | |
# args.image_size = args.image_size_encoder # 224, follow the triplane size | |
# if args.diffusion_input_size == -1: | |
# else: | |
# args.image_size = args.diffusion_input_size | |
if args.pred_type == 'v': # for lsgm training | |
assert args.predict_v == True # for DDIM sampling | |
# if not args.create_dit: | |
denoise_model, diffusion = create_model_and_diffusion( | |
**args_to_dict(args, | |
model_and_diffusion_defaults().keys())) | |
opts = eg3d_options_default() | |
if args.sr_training: | |
args.sr_kwargs = dnnlib.EasyDict( | |
channel_base=opts.cbase, | |
channel_max=opts.cmax, | |
fused_modconv_default='inference_only', | |
use_noise=True | |
) # ! close noise injection? since noise_mode='none' in eg3d | |
logger.log("creating encoder and NSR decoder...") | |
auto_encoder = create_3DAE_model( | |
**args_to_dict(args, | |
encoder_and_nsr_defaults().keys())) | |
auto_encoder.to(device) | |
auto_encoder.eval() | |
# * load G_ema modules into autoencoder | |
# * clone G_ema.decoder to auto_encoder triplane | |
# logger.log("AE triplane decoder reuses G_ema decoder...") | |
# auto_encoder.decoder.register_buffer('w_avg', G_ema.backbone.mapping.w_avg) | |
# auto_encoder.decoder.triplane_decoder.decoder.load_state_dict( # type: ignore | |
# G_ema.decoder.state_dict()) # type: ignore | |
# set grad=False in this manner suppresses the DDP forward no grad error. | |
# if args.sr_training: | |
# logger.log("AE triplane decoder reuses G_ema SR module...") | |
# # auto_encoder.decoder.triplane_decoder.superresolution.load_state_dict( # type: ignore | |
# # G_ema.superresolution.state_dict()) # type: ignore | |
# # set grad=False in this manner suppresses the DDP forward no grad error. | |
# logger.log("freeze SR module...") | |
# for param in auto_encoder.decoder.superresolution.parameters(): # type: ignore | |
# param.requires_grad_(False) | |
# # del G_ema | |
# th.cuda.empty_cache() | |
if args.freeze_triplane_decoder: | |
logger.log("freeze triplane decoder...") | |
for param in auto_encoder.decoder.triplane_decoder.parameters( | |
): # type: ignore | |
# for param in auto_encoder.decoder.triplane_decoder.decoder.parameters(): # type: ignore | |
param.requires_grad_(False) | |
if args.cfg in ('afhq', 'ffhq'): | |
if args.sr_training: | |
logger.log("AE triplane decoder reuses G_ema SR module...") | |
auto_encoder.decoder.triplane_decoder.superresolution.load_state_dict( # type: ignore | |
G_ema.superresolution.state_dict()) # type: ignore | |
# set grad=False in this manner suppresses the DDP forward no grad error. | |
for param in auto_encoder.decoder.triplane_decoder.superresolution.parameters( | |
): # type: ignore | |
param.requires_grad_(False) | |
# ! load data | |
if args.use_lmdb: | |
logger.log("creating LMDB eg3d data loader...") | |
training_set = LMDBDataset_MV_Compressed_eg3d( | |
args.data_dir, | |
args.image_size, | |
args.image_size_encoder, | |
) | |
else: | |
logger.log("creating eg3d data loader...") | |
training_set_kwargs, dataset_name = init_dataset_kwargs( | |
data=args.data_dir, | |
class_name='datasets.eg3d_dataset.ImageFolderDataset', | |
reso_gt=args.image_size) # only load pose here | |
# if args.cond and not training_set_kwargs.use_labels: | |
# raise Exception('check here') | |
# training_set_kwargs.use_labels = args.cond | |
training_set_kwargs.use_labels = True | |
training_set_kwargs.xflip = False | |
training_set_kwargs.random_seed = SEED | |
training_set_kwargs.max_size = args.dataset_size | |
# desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}' | |
# * construct ffhq/afhq dataset | |
training_set = dnnlib.util.construct_class_by_name( | |
**training_set_kwargs) # subclass of training.dataset.Dataset | |
training_set_sampler = InfiniteSampler( | |
dataset=training_set, | |
rank=dist_util.get_rank(), | |
num_replicas=dist_util.get_world_size(), | |
seed=SEED) | |
data = iter( | |
th.utils.data.DataLoader( | |
dataset=training_set, | |
sampler=training_set_sampler, | |
batch_size=args.batch_size, | |
pin_memory=True, | |
num_workers=args.num_workers, | |
persistent_workers=args.num_workers > 0, | |
prefetch_factor=max(8 // args.batch_size, 2), | |
)) | |
# prefetch_factor=2)) | |
eval_data = th.utils.data.DataLoader(dataset=Subset( | |
training_set, np.arange(8)), | |
batch_size=args.eval_batch_size, | |
num_workers=1) | |
else: | |
logger.log("creating data loader...") | |
if args.objv_dataset: | |
from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data, load_data_cls | |
else: # shapenet | |
from datasets.shapenet import load_data, load_eval_data, load_memory_data | |
# TODO, load shapenet data | |
# data = load_data( | |
# st() mark | |
# if args.overfitting: | |
# logger.log("create overfitting memory dataset") | |
# data = load_memory_data( | |
# file_path=args.eval_data_dir, | |
# batch_size=args.batch_size, | |
# reso=args.image_size, | |
# reso_encoder=args.image_size_encoder, # 224 -> 128 | |
# num_workers=args.num_workers, | |
# load_depth=True # for evaluation | |
# ) | |
# else: | |
if args.use_wds: | |
if args.data_dir == 'NONE': | |
with open(args.shards_lst) as f: | |
shards_lst = [url.strip() for url in f.readlines()] | |
data = load_wds_data( | |
shards_lst, args.image_size, args.image_size_encoder, | |
args.batch_size, args.num_workers, | |
**args_to_dict(args, | |
dataset_defaults().keys())) | |
else: | |
data = load_wds_data( | |
args.data_dir, args.image_size, args.image_size_encoder, | |
args.batch_size, args.num_workers, | |
**args_to_dict(args, | |
dataset_defaults().keys())) | |
# eval_data = load_wds_data( | |
# args.data_dir, | |
# args.image_size, | |
# args.image_size_encoder, | |
# args.eval_batch_size, | |
# args.num_workers, | |
# decode_encode_img_only=args.decode_encode_img_only, | |
# load_wds_diff=args.load_wds_diff) | |
if args.eval_data_dir == 'NONE': | |
with open(args.eval_shards_lst) as f: | |
eval_shards_lst = [url.strip() for url in f.readlines()] | |
else: | |
eval_shards_lst = args.eval_data_dir # auto expanded | |
eval_data = load_wds_data( | |
eval_shards_lst, | |
args.image_size, | |
args.image_size_encoder, | |
args.eval_batch_size, | |
args.num_workers, | |
plucker_embedding=args.plucker_embedding, | |
decode_encode_img_only=args.decode_encode_img_only, | |
mv_input=args.mv_input, | |
load_wds_diff=False, | |
load_instance=True) | |
else: | |
logger.log("create all instances dataset") | |
# st() mark | |
# data = load_data( | |
# file_path=args.data_dir, | |
# batch_size=args.batch_size, | |
# reso=args.image_size, | |
# reso_encoder=args.image_size_encoder, # 224 -> 128 | |
# num_workers=args.num_workers, | |
# load_depth=args.load_depth, | |
# preprocess=auto_encoder.preprocess, # clip | |
# dataset_size=args.dataset_size, | |
# use_lmdb=args.use_lmdb, | |
# trainer_name=args.trainer_name, | |
# # load_depth=True # for evaluation | |
# ) | |
# eval_data = load_eval_data( | |
# file_path=args.eval_data_dir, | |
# batch_size=args.eval_batch_size, | |
# reso=args.image_size, | |
# reso_encoder=args.image_size_encoder, # 224 -> 128 | |
# num_workers=args.num_workers, | |
# load_depth=True, # for evaluation | |
# interval=args.interval, | |
# use_lmdb=args.use_lmdb, | |
# ) | |
data = load_data( | |
file_path=args.data_dir, | |
batch_size=args.batch_size, | |
reso=args.image_size, | |
reso_encoder=args.image_size_encoder, # 224 -> 128 | |
num_workers=args.num_workers, | |
load_latent=True, | |
**args_to_dict(args, | |
dataset_defaults().keys()) | |
# load_depth=args.load_depth, | |
# preprocess=auto_encoder.preprocess, # clip | |
# dataset_size=args.dataset_size, | |
# use_lmdb=args.use_lmdb, | |
# trainer_name=args.trainer_name, | |
# load_depth=True # for evaluation | |
) | |
# eval_dataset = load_data_cls( | |
# file_path=args.data_dir, | |
# batch_size=args.batch_size, | |
# reso=args.image_size, | |
# reso_encoder=args.image_size_encoder, # 224 -> 128 | |
# num_workers=args.num_workers, | |
# load_latent=True, | |
# return_dataset=True, | |
# **args_to_dict(args, | |
# dataset_defaults().keys()) | |
# # load_depth=args.load_depth, | |
# # preprocess=auto_encoder.preprocess, # clip | |
# # dataset_size=args.dataset_size, | |
# # use_lmdb=args.use_lmdb, | |
# # trainer_name=args.trainer_name, | |
# # load_depth=True # for evaluation | |
# ) | |
eval_dataset = None | |
# st() | |
# eval_data = data | |
# eval_data = load_eval_data( | |
# file_path=args.eval_data_dir, | |
# batch_size=args.eval_batch_size, | |
# reso=args.image_size, | |
# reso_encoder=args.image_size_encoder, # 224 -> 128 | |
# num_workers=args.num_workers, | |
# load_depth=True, # for evaluation | |
# interval=args.interval, | |
# use_lmdb=args.use_lmdb, | |
# ) | |
# let all processes sync up before starting with a new epoch of training | |
if dist_util.get_rank() == 0: | |
with open(os.path.join(args.logdir, 'args.json'), 'w') as f: | |
json.dump(vars(args), f, indent=2) | |
args.schedule_sampler = create_named_schedule_sampler( | |
args.schedule_sampler, diffusion) | |
opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) | |
loss_class = E3DGELossClass(device, opt).to(device) | |
logger.log("training...") | |
TrainLoop = { | |
'flow_matching': | |
nsr.lsgm.flow_matching_trainer.FlowMatchingEngine, | |
'flow_matching_gs': | |
nsr.lsgm.flow_matching_trainer.FlowMatchingEngine_gs, # slightly modified sampling and rendering for gs | |
'flow_matching_gs_clay': | |
nsr.lsgm.flow_matching_trainer.FlowMatchingEngine_gs_clay, # slightly modified sampling and rendering for gs | |
}[args.trainer_name] | |
if 'vpsde' in args.trainer_name: | |
sde_diffusion = make_sde_diffusion( | |
dnnlib.EasyDict( | |
args_to_dict(args, | |
continuous_diffusion_defaults().keys()))) | |
# assert args.mixed_prediction, 'enable mixed_prediction by default' | |
logger.log('create VPSDE diffusion.') | |
else: | |
sde_diffusion = None | |
if 'cldm' in args.trainer_name: | |
assert isinstance(denoise_model, tuple) | |
denoise_model, controlNet = denoise_model | |
controlNet.to(dist_util.dev()) | |
controlNet.train() | |
else: | |
controlNet = None | |
# st() | |
denoise_model.to(dist_util.dev()) | |
denoise_model.train() | |
auto_encoder.decoder.rendering_kwargs = args.rendering_kwargs | |
TrainLoop(rec_model=auto_encoder, | |
denoise_model=denoise_model, | |
control_model=controlNet, | |
diffusion=diffusion, | |
sde_diffusion=sde_diffusion, | |
loss_class=loss_class, | |
data=data, | |
eval_data=None, # return dataset | |
# eval_data=eval_dataset, # return dataset | |
# eval_data=eval_data, # return dataset | |
**vars(args)).run_loop() | |
dist_util.synchronize() | |
def create_argparser(**kwargs): | |
# defaults.update(model_and_diffusion_defaults()) | |
defaults = dict( | |
dataset_size=-1, | |
diffusion_input_size=-1, | |
trainer_name='adm', | |
use_amp=False, | |
train_vae=True, # jldm? | |
triplane_scaling_divider=1.0, # divide by this value | |
overfitting=False, | |
num_workers=4, | |
image_size=128, | |
image_size_encoder=224, | |
iterations=150000, | |
schedule_sampler="uniform", | |
anneal_lr=False, | |
lr=5e-5, | |
weight_decay=0.0, | |
lr_anneal_steps=0, | |
batch_size=1, | |
eval_batch_size=12, | |
microbatch=-1, # -1 disables microbatches | |
ema_rate="0.9999", # comma-separated list of EMA values | |
log_interval=50, | |
eval_interval=2500, | |
save_interval=10000, | |
resume_checkpoint="", | |
resume_checkpoint_EG3D="", | |
use_fp16=False, | |
fp16_scale_growth=1e-3, | |
data_dir="", | |
eval_data_dir="", | |
load_depth=True, # TODO | |
logdir="/mnt/lustre/yslan/logs/nips23/", | |
load_submodule_name='', # for loading pretrained auto_encoder model | |
ignore_resume_opt=False, | |
# freeze_ae=False, | |
denoised_ae=True, | |
diffusion_ce_anneal=False, | |
use_lmdb=False, | |
interval=1, | |
freeze_triplane_decoder=False, | |
objv_dataset=False, | |
use_eos_feature=False, | |
clip_grad_throld=1.0, | |
allow_tf32=True, | |
) | |
defaults.update(model_and_diffusion_defaults()) | |
defaults.update(continuous_diffusion_defaults()) | |
defaults.update(encoder_and_nsr_defaults()) # type: ignore | |
defaults.update(dataset_defaults()) # type: ignore | |
defaults.update(loss_defaults()) | |
defaults.update(control_net_defaults()) | |
parser = argparse.ArgumentParser() | |
add_dict_to_argparser(parser, defaults) | |
# ! add transport args | |
parse_transport_args(parser) | |
return parser | |
if __name__ == "__main__": | |
# os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO" | |
# os.environ["NCCL_DEBUG"] = "INFO" | |
th.multiprocessing.set_start_method('spawn') | |
th.multiprocessing.set_sharing_strategy('file_system') # avoid "too many files opened" | |
# https://stackoverflow.com/questions/76300957/multiprocessing-pool-too-many-file-descriptors-using-pytorch | |
# https://stackoverflow.com/questions/48250053/pytorchs-dataloader-too-many-open-files-error-when-no-files-should-be-open | |
os.environ[ | |
"TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. | |
args = create_argparser().parse_args() | |
args.local_rank = int(os.environ["LOCAL_RANK"]) | |
args.gpus = th.cuda.device_count() | |
# opts = dnnlib.EasyDict(vars(args)) # compatiable with triplane original settings | |
# opts = args | |
args.rendering_kwargs = rendering_options_defaults(args) | |
# Launch processes. | |
logger.log('Launching processes...') | |
logger.log('Available devices ', th.cuda.device_count()) | |
logger.log('Current cuda device ', th.cuda.current_device()) | |
# logger.log('GPU Device name:', th.cuda.get_device_name(th.cuda.current_device())) | |
try: | |
training_loop(args) | |
# except KeyboardInterrupt as e: | |
except Exception as e: | |
# print(e) | |
traceback.print_exc() | |
dist_util.cleanup() # clean port and socket when ctrl+c | |