GaussianAnything-AIGC3D / scripts /wds_create_batch_gz.py
yslan's picture
init
7f51798
"""
Train a diffusion model on images.
"""
import cv2
# import imageio
import lz4.frame
import gzip
import random
import json
import sys
import os
import lmdb
from tqdm import tqdm
sys.path.append('.')
import torch.distributed as dist
from pathlib import Path
import pickle
import traceback
from PIL import Image
import torch as th
if th.cuda.is_available():
from xformers.triton import FusedLayerNorm as LayerNorm
import torch.multiprocessing as mp
import lzma
import webdataset as wds
import numpy as np
from torch.utils.data import DataLoader, Dataset
import imageio.v3 as iio
import argparse
import dnnlib
from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
args_to_dict,
add_dict_to_argparser,
)
# from nsr.train_util import TrainLoop3DRec as TrainLoop
# from nsr.train_nv_util import TrainLoop3DRecNV, TrainLoop3DRec, TrainLoop3DRecNVPatch
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default
from datasets.shapenet import load_data, load_data_for_lmdb, load_eval_data, load_memory_data
from nsr.losses.builder import E3DGELossClass
from datasets.eg3d_dataset import init_dataset_kwargs
# from .lmdb_create import encode_and_compress_image
def encode_and_compress_image(inp_array, is_image=False, compress=True):
# Read the image using imageio
# image = imageio.v3.imread(image_path)
# Convert the image to bytes
# with io.BytesIO() as byte_buffer:
# imageio.imsave(byte_buffer, image, format="png")
# image_bytes = byte_buffer.getvalue()
if is_image:
inp_bytes = iio.imwrite("<bytes>", inp_array, extension=".png")
else:
inp_bytes = inp_array.tobytes()
# Compress the image data using gzip
if compress:
# compressed_data = gzip.compress(inp_bytes)
compressed_data = lz4.frame.compress(inp_bytes)
return compressed_data
else:
return inp_bytes
from pdb import set_trace as st
import bz2
# th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16
def training_loop(args):
# def training_loop(args):
# dist_util.setup_dist(args)
# th.autograd.set_detect_anomaly(True) # type: ignore
th.autograd.set_detect_anomaly(False) # type: ignore
# https://blog.csdn.net/qq_41682740/article/details/126304613
SEED = args.seed
# dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count())
# logger.log(f"{args.local_rank=} init complete, seed={SEED}")
# th.cuda.set_device(args.local_rank)
th.cuda.empty_cache()
# * deterministic algorithms flags
th.cuda.manual_seed_all(SEED)
np.random.seed(SEED)
random.seed(SEED)
# logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"])
logger.configure(dir=args.logdir)
logger.log("creating encoder and NSR decoder...")
# device = dist_util.dev()
# device = th.device("cuda", args.local_rank)
# shared eg3d opts
opts = eg3d_options_default()
if args.sr_training:
args.sr_kwargs = dnnlib.EasyDict(
channel_base=opts.cbase,
channel_max=opts.cmax,
fused_modconv_default='inference_only',
use_noise=True
) # ! close noise injection? since noise_mode='none' in eg3d
if args.objv_dataset:
from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_data_for_lmdb
else: # shapenet
from datasets.shapenet import load_data, load_eval_data, load_memory_data, load_data_for_lmdb
# auto_encoder = create_3DAE_model(
# **args_to_dict(args,
# encoder_and_nsr_defaults().keys()))
# auto_encoder.to(device)
# auto_encoder.train()
logger.log("creating data loader...")
# data = load_data(
# st()
# if args.overfitting:
# data = load_memory_data(
# file_path=args.data_dir,
# batch_size=args.batch_size,
# reso=args.image_size,
# reso_encoder=args.image_size_encoder, # 224 -> 128
# num_workers=args.num_workers,
# # load_depth=args.depth_lambda > 0
# load_depth=True # for evaluation
# )
# else:
if args.cfg in ('afhq', 'ffhq'):
# ! load data
logger.log("creating eg3d data loader...")
training_set_kwargs, dataset_name = init_dataset_kwargs(data=args.data_dir,
class_name='datasets.eg3d_dataset.ImageFolderDatasetLMDB',
reso_gt=args.image_size) # only load pose here
# if args.cond and not training_set_kwargs.use_labels:
# raise Exception('check here')
# training_set_kwargs.use_labels = args.cond
training_set_kwargs.use_labels = True
training_set_kwargs.xflip = False
training_set_kwargs.random_seed = SEED
# training_set_kwargs.max_size = args.dataset_size
# desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}'
# * construct ffhq/afhq dataset
training_set = dnnlib.util.construct_class_by_name(
**training_set_kwargs) # subclass of training.dataset.Dataset
dataset_size = len(training_set)
# training_set_sampler = InfiniteSampler(
# dataset=training_set,
# rank=dist_util.get_rank(),
# num_replicas=dist_util.get_world_size(),
# seed=SEED)
data = DataLoader(
training_set,
shuffle=False,
batch_size=1,
num_workers=16,
drop_last=False,
# prefetch_factor=2,
pin_memory=True,
persistent_workers=True,
)
else:
# data, dataset_name, dataset_size, dataset = load_data_for_lmdb(
data, dataset_name, dataset_size = load_data_for_lmdb(
file_path=args.data_dir,
batch_size=args.batch_size,
reso=args.image_size,
reso_encoder=args.image_size_encoder, # 224 -> 128
num_workers=args.num_workers,
load_depth=True,
preprocess=None,
dataset_size=args.dataset_size,
trainer_name=args.trainer_name,
shuffle_across_cls=args.shuffle_across_cls,
wds_split=args.wds_split,
# wds_output_path=os.path.join(logger.get_dir(), f'wds-%06d.tar')
# load_depth=True # for evaluation
)
# if args.pose_warm_up_iter > 0:
# overfitting_dataset = load_memory_data(
# file_path=args.data_dir,
# batch_size=args.batch_size,
# reso=args.image_size,
# reso_encoder=args.image_size_encoder, # 224 -> 128
# num_workers=args.num_workers,
# # load_depth=args.depth_lambda > 0
# load_depth=True # for evaluation
# )
# data = [data, overfitting_dataset, args.pose_warm_up_iter]
# eval_data = load_eval_data(
# file_path=args.eval_data_dir,
# batch_size=args.eval_batch_size,
# reso=args.image_size,
# reso_encoder=args.image_size_encoder, # 224 -> 128
# num_workers=args.num_workers,
# load_depth=True, # for evaluation
# preprocess=auto_encoder.preprocess)
args.img_size = [args.image_size_encoder]
# try dry run
# batch = next(data)
# batch = None
# logger.log("creating model and diffusion...")
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
# schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys()))
# opt.max_depth, opt.min_depth = args.rendering_kwargs.ray_end, args.rendering_kwargs.ray_start
# loss_class = E3DGELossClass(device, opt).to(device)
# writer = SummaryWriter() # TODO, add log dir
logger.log("training...")
# TrainLoop = {
# 'input_rec': TrainLoop3DRec,
# 'nv_rec': TrainLoop3DRecNV,
# 'nv_rec_patch': TrainLoop3DRecNVPatch,
# }[args.trainer_name]
# TrainLoop(rec_model=auto_encoder,
# loss_class=loss_class,
# data=data,
# eval_data=eval_data,
# **vars(args)).run_loop() # ! overfitting
# Function to compress an image using gzip
# def compress_image_gzip(image_path):
# def encode_and_compress_image(inp_array, is_image=False):
# # Read the image using imageio
# # image = imageio.v3.imread(image_path)
# # Convert the image to bytes
# # with io.BytesIO() as byte_buffer:
# # imageio.imsave(byte_buffer, image, format="png")
# # image_bytes = byte_buffer.getvalue()
# if is_image:
# inp_bytes = iio.imwrite("<bytes>", inp_array, extension=".png")
# else:
# inp_bytes = inp_array.tobytes()
# # Compress the image data using gzip
# compressed_data = gzip.compress(inp_bytes)
# return compressed_data
def convert_to_wds_compressed(dataset_loader, dataset_size, lmdb_path, start_shard, wds_split):
"""
Convert a PyTorch dataset to LMDB format.
Parameters:
- dataset: PyTorch dataset
- lmdb_path: Path to store the LMDB database
"""
# env = lmdb.open(lmdb_path, map_size=1024 ** 4, readahead=False) # Adjust map_size based on your dataset size
# sink = wds.ShardWriter(lmdb_path, start_shard=start_shard, compress=True)
# sink = wds.ShardWriter(lmdb_path, start_shard=start_shard, compress=False)
# with env.begin(write=True) as txn:
# with env.begin(write=True) as txn:
# txn.put("length".encode("utf-8"), str(dataset_size).encode("utf-8"))
for idx, sample in enumerate(tqdm(dataset_loader)):
# if idx > 10:
# break
# pass
# remove the batch index of returned dict sample
# st()
sample_ins = sample.pop('ins')
assert all([sample_ins[i]==sample_ins[0] for i in range(0,len(sample_ins))]), sample_ins # check the batch is the same instnace
ins = sample_ins[0]
sample = {
# k:v.squeeze(0).cpu().numpy() if isinstance(v, th.Tensor) else v[0] for k, v in sample.items()
k:v.cpu().numpy() if isinstance(v, th.Tensor) else v for k, v in sample.items()
# k:v.cpu().numpy() if isinstance(v, torch.Tensor) else v for k, v in sample.items()
}
# encode batch images/depths/strings? no need to encode ins/fname here; just save the caption
# sample = dataset_loader[idx]
# compressed_sample = {}
caption = sample.pop('caption')[0]
# root_dir = os.path.join(logger.get_dir(), ins.split('/')[0], idx)
# root_dir = Path(os.path.join(logger.get_dir(), str(idx)) )
root_dir = Path(os.path.join(logger.get_dir(), ins) )
if root_dir.exists(): # find where to save what
save_idx = int(sorted(os.listdir(root_dir) )[-1] )
if save_idx >= 3: # may have duplicated stuffs.
continue
else:
root_dir.mkdir(parents=True, exist_ok=True)
save_idx = 0
root_dir = root_dir / f'{save_idx+1}'
# assert not root_dir.exists()
root_dir.mkdir(parents=True, exist_ok=False)
raw_img = sample.pop('raw_img')
# depth = sample.pop('depth') # just c and bbox
# depth = sample.pop('d_normalized') # just c and bbox
depth = sample.pop('depth') # just c and bbox
# d_near = sample.pop('d_near') # just c and bbox
# d_far = sample.pop('d_far') # just c and bbox
# d_near_far = np.stack([d_near, d_far])
normal = sample.pop('normal') # shall in [-1,1]
alpha_mask = (sample.pop('alpha_mask')*255).astype(np.uint8)
raw_img = np.concatenate([raw_img[i] for i in range(raw_img.shape[0])], axis=1) # concat png in w dim
# depth = np.concatenate([depth[i] for i in range(depth.shape[0])], axis=1) # concat png in w dim
alpha_mask = np.concatenate([alpha_mask[i] for i in range(alpha_mask.shape[0])], axis=1) # concat png in w dim
# depth_alpha = np.concatenate([depth, alpha_mask], axis=0)
normal = np.concatenate([normal[i] for i in range(normal.shape[0])], axis=1) # concat png in w dim
# nlrmal
# img_depth_alpha = np.concatenate([raw_img, depth, alpha_mask], axis=-1)
cv2.imwrite(os.path.join(str(root_dir), 'raw_img.jpg'), cv2.cvtColor(raw_img, cv2.COLOR_RGB2BGR), [int(cv2.IMWRITE_JPEG_QUALITY), 95])
# cv2.imwrite(os.path.join(str(root_dir), 'raw_img.png'), cv2.cvtColor(raw_img, cv2.COLOR_RGB2BGR),) # ! save a png version, v=5.
# cv2.imwrite(str(root_dir / 'depth_alpha.jpg'), depth_alpha, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
cv2.imwrite(str(root_dir / 'alpha.jpg'), alpha_mask, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
cv2.imwrite(str(root_dir / 'normal.png'), (normal*127.5+127.5)) # no quant error here
# st()
np.savez_compressed(str(root_dir / 'depth.npz'), depth=depth)
# np.save(root_dir / 'd_near_far.npy', d_near_far) # save high-res depth with npz
np.save(root_dir / 'c.npy', sample['c'].astype(np.float32))
# np.save(root_dir / 'bbox.npy', sample['bbox'].astype(np.uint8))
with open(root_dir / 'caption.txt', 'w') as f:
f.write(caption)
with open(root_dir / 'ins.txt', 'w') as f:
# f.write(ins.encode('utf8'))
f.write(ins)
# sink.write({
# "__key__": f"sample_{wds_split:03d}_{idx:07d}",
# # 'sample.npz': sample, # {str: ndarray}
# # 'c.npy': sample['c'].astype(np.float32),
# # 'bbox.npy': sample['bbox'].astype(np.uint8),
# # 'ins.txt': ins,
# # 'caption.txt': caption,
# # 'd_near.npy': d_near.astype(np.float32),
# # 'd_far.npy': d_far.astype(np.float32),
# # 'raw_img.jpeg': raw_img,
# # # 'raw_img.png': raw_img,
# # 'alpha_mask.jpeg': alpha_mask, # lossless compression
# 'depth_alpha.png': depth_alpha,
# 'raw_img.png': raw_img,
# })
# sink.close()
# convert_to_wds_compressed(data, dataset_size, os.path.join(logger.get_dir(), f'wds-%06d.tar.gz'), args.start_shard, args.wds_split)
convert_to_wds_compressed(data, dataset_size, os.path.join(logger.get_dir(), f'wds-%06d.tar'), args.start_shard, args.wds_split)
def create_argparser(**kwargs):
# defaults.update(model_and_diffusion_defaults())
defaults = dict(
seed=0,
dataset_size=-1,
trainer_name='input_rec',
use_amp=False,
overfitting=False,
num_workers=4,
image_size=128,
image_size_encoder=224,
iterations=150000,
anneal_lr=False,
lr=5e-5,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=1,
eval_batch_size=12,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=50,
eval_interval=2500,
save_interval=10000,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
data_dir="",
eval_data_dir="",
# load_depth=False, # TODO
logdir="/mnt/lustre/yslan/logs/nips23/",
# test warm up pose sampling training
objv_dataset=False,
pose_warm_up_iter=-1,
start_shard=0,
shuffle_across_cls=False,
wds_split=1, # out of 4
)
defaults.update(encoder_and_nsr_defaults()) # type: ignore
defaults.update(loss_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
th.multiprocessing.set_start_method('spawn')
# os.environ[
# "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging.
# os.environ["TORCH_CPP_LOG_LEVEL"]="INFO"
# os.environ["NCCL_DEBUG"]="INFO"
args = create_argparser().parse_args()
# args.local_rank = int(os.environ["LOCAL_RANK"])
args.gpus = th.cuda.device_count()
opts = args
args.rendering_kwargs = rendering_options_defaults(opts)
# print(args)
with open(os.path.join(args.logdir, 'args.json'), 'w') as f:
json.dump(vars(args), f, indent=2)
# Launch processes.
print('Launching processes...')
# try:
training_loop(args)
# except KeyboardInterrupt as e:
# except Exception as e:
# # print(e)
# traceback.print_exc()
# dist_util.cleanup() # clean port and socket when ctrl+c