yslan's picture
update
fc6af43
/*
* Copyright (C) 2023, Inria
* GRAPHDECO research group, https://team.inria.fr/graphdeco
* All rights reserved.
*
* This software is free for non-commercial, research and evaluation use
* under the terms of the LICENSE.md file.
*
* For inquiries contact george.drettakis@inria.fr
*/
#ifndef CUDA_RASTERIZER_AUXILIARY_H_INCLUDED
#define CUDA_RASTERIZER_AUXILIARY_H_INCLUDED
#include "config.h"
#include "stdio.h"
#define BLOCK_SIZE (BLOCK_X * BLOCK_Y)
#define NUM_WARPS (BLOCK_SIZE/32)
#define TIGHTBBOX 0
#define RENDER_AXUTILITY 1
#define DEPTH_OFFSET 0
#define ALPHA_OFFSET 1
#define NORMAL_OFFSET 2
#define MIDDEPTH_OFFSET 5
#define DISTORTION_OFFSET 6
// #define MEDIAN_WEIGHT_OFFSET 7
// distortion helper macros
#define BACKFACE_CULL 1
#define DUAL_VISIABLE 1
// #define NEAR_PLANE 0.2
// #define FAR_PLANE 100.0
#define DETACH_WEIGHT 0
__device__ const float near_n = 0.2;
__device__ const float far_n = 100.0;
__device__ const float FilterSize = 0.707106; // sqrt(2) / 2
__device__ const float FilterInvSquare = 2.0f;
// Spherical harmonics coefficients
__device__ const float SH_C0 = 0.28209479177387814f;
__device__ const float SH_C1 = 0.4886025119029199f;
__device__ const float SH_C2[] = {
1.0925484305920792f,
-1.0925484305920792f,
0.31539156525252005f,
-1.0925484305920792f,
0.5462742152960396f
};
__device__ const float SH_C3[] = {
-0.5900435899266435f,
2.890611442640554f,
-0.4570457994644658f,
0.3731763325901154f,
-0.4570457994644658f,
1.445305721320277f,
-0.5900435899266435f
};
__forceinline__ __device__ float ndc2Pix(float v, int S)
{
return ((v + 1.0) * S - 1.0) * 0.5;
}
__forceinline__ __device__ void getRect(const float2 p, int max_radius, uint2& rect_min, uint2& rect_max, dim3 grid)
{
rect_min = {
min(grid.x, max((int)0, (int)((p.x - max_radius) / BLOCK_X))),
min(grid.y, max((int)0, (int)((p.y - max_radius) / BLOCK_Y)))
};
rect_max = {
min(grid.x, max((int)0, (int)((p.x + max_radius + BLOCK_X - 1) / BLOCK_X))),
min(grid.y, max((int)0, (int)((p.y + max_radius + BLOCK_Y - 1) / BLOCK_Y)))
};
}
__forceinline__ __device__ float3 transformPoint4x3(const float3& p, const float* matrix)
{
float3 transformed = {
matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z + matrix[12],
matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z + matrix[13],
matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z + matrix[14],
};
return transformed;
}
__forceinline__ __device__ float4 transformPoint4x4(const float3& p, const float* matrix)
{
float4 transformed = {
matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z + matrix[12],
matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z + matrix[13],
matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z + matrix[14],
matrix[3] * p.x + matrix[7] * p.y + matrix[11] * p.z + matrix[15]
};
return transformed;
}
__forceinline__ __device__ float3 transformVec4x3(const float3& p, const float* matrix)
{
float3 transformed = {
matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z,
matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z,
matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z,
};
return transformed;
}
__forceinline__ __device__ float3 transformVec4x3Transpose(const float3& p, const float* matrix)
{
float3 transformed = {
matrix[0] * p.x + matrix[1] * p.y + matrix[2] * p.z,
matrix[4] * p.x + matrix[5] * p.y + matrix[6] * p.z,
matrix[8] * p.x + matrix[9] * p.y + matrix[10] * p.z,
};
return transformed;
}
__forceinline__ __device__ float dnormvdz(float3 v, float3 dv)
{
float sum2 = v.x * v.x + v.y * v.y + v.z * v.z;
float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2);
float dnormvdz = (-v.x * v.z * dv.x - v.y * v.z * dv.y + (sum2 - v.z * v.z) * dv.z) * invsum32;
return dnormvdz;
}
__forceinline__ __device__ float3 dnormvdv(float3 v, float3 dv)
{
float sum2 = v.x * v.x + v.y * v.y + v.z * v.z;
float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2);
float3 dnormvdv;
dnormvdv.x = ((+sum2 - v.x * v.x) * dv.x - v.y * v.x * dv.y - v.z * v.x * dv.z) * invsum32;
dnormvdv.y = (-v.x * v.y * dv.x + (sum2 - v.y * v.y) * dv.y - v.z * v.y * dv.z) * invsum32;
dnormvdv.z = (-v.x * v.z * dv.x - v.y * v.z * dv.y + (sum2 - v.z * v.z) * dv.z) * invsum32;
return dnormvdv;
}
__forceinline__ __device__ float4 dnormvdv(float4 v, float4 dv)
{
float sum2 = v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w;
float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2);
float4 vdv = { v.x * dv.x, v.y * dv.y, v.z * dv.z, v.w * dv.w };
float vdv_sum = vdv.x + vdv.y + vdv.z + vdv.w;
float4 dnormvdv;
dnormvdv.x = ((sum2 - v.x * v.x) * dv.x - v.x * (vdv_sum - vdv.x)) * invsum32;
dnormvdv.y = ((sum2 - v.y * v.y) * dv.y - v.y * (vdv_sum - vdv.y)) * invsum32;
dnormvdv.z = ((sum2 - v.z * v.z) * dv.z - v.z * (vdv_sum - vdv.z)) * invsum32;
dnormvdv.w = ((sum2 - v.w * v.w) * dv.w - v.w * (vdv_sum - vdv.w)) * invsum32;
return dnormvdv;
}
__forceinline__ __device__ float3 cross(float3 a, float3 b){return make_float3(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x);}
__forceinline__ __device__ float3 operator*(float3 a, float3 b){return make_float3(a.x * b.x, a.y * b.y, a.z*b.z);}
__forceinline__ __device__ float2 operator*(float2 a, float2 b){return make_float2(a.x * b.x, a.y * b.y);}
__forceinline__ __device__ float3 operator*(float f, float3 a){return make_float3(f * a.x, f * a.y, f * a.z);}
__forceinline__ __device__ float2 operator*(float f, float2 a){return make_float2(f * a.x, f * a.y);}
__forceinline__ __device__ float3 operator-(float3 a, float3 b){return make_float3(a.x - b.x, a.y - b.y, a.z - b.z);}
__forceinline__ __device__ float2 operator-(float2 a, float2 b){return make_float2(a.x - b.x, a.y - b.y);}
__forceinline__ __device__ float sumf3(float3 a){return a.x + a.y + a.z;}
__forceinline__ __device__ float sumf2(float2 a){return a.x + a.y;}
__forceinline__ __device__ float3 sqrtf3(float3 a){return make_float3(sqrtf(a.x), sqrtf(a.y), sqrtf(a.z));}
__forceinline__ __device__ float2 sqrtf2(float2 a){return make_float2(sqrtf(a.x), sqrtf(a.y));}
__forceinline__ __device__ float3 minf3(float f, float3 a){return make_float3(min(f, a.x), min(f, a.y), min(f, a.z));}
__forceinline__ __device__ float2 minf2(float f, float2 a){return make_float2(min(f, a.x), min(f, a.y));}
__forceinline__ __device__ float3 maxf3(float f, float3 a){return make_float3(max(f, a.x), max(f, a.y), max(f, a.z));}
__forceinline__ __device__ float2 maxf2(float f, float2 a){return make_float2(max(f, a.x), max(f, a.y));}
__forceinline__ __device__ bool in_frustum(int idx,
const float* orig_points,
const float* viewmatrix,
const float* projmatrix,
bool prefiltered,
float3& p_view)
{
float3 p_orig = { orig_points[3 * idx], orig_points[3 * idx + 1], orig_points[3 * idx + 2] };
// Bring points to screen space
float4 p_hom = transformPoint4x4(p_orig, projmatrix);
float p_w = 1.0f / (p_hom.w + 0.0000001f);
float3 p_proj = { p_hom.x * p_w, p_hom.y * p_w, p_hom.z * p_w };
p_view = transformPoint4x3(p_orig, viewmatrix);
if (p_view.z <= 0.2f)// || ((p_proj.x < -1.3 || p_proj.x > 1.3 || p_proj.y < -1.3 || p_proj.y > 1.3)))
{
if (prefiltered)
{
printf("Point is filtered although prefiltered is set. This shouldn't happen!");
__trap();
}
return false;
}
return true;
}
// adopt from gsplat: https://github.com/nerfstudio-project/gsplat/blob/main/gsplat/cuda/csrc/forward.cu
inline __device__ glm::mat3 quat_to_rotmat(const glm::vec4 quat) {
// quat to rotation matrix
float s = rsqrtf(
quat.w * quat.w + quat.x * quat.x + quat.y * quat.y + quat.z * quat.z
);
float w = quat.x * s;
float x = quat.y * s;
float y = quat.z * s;
float z = quat.w * s;
// glm matrices are column-major
return glm::mat3(
1.f - 2.f * (y * y + z * z),
2.f * (x * y + w * z),
2.f * (x * z - w * y),
2.f * (x * y - w * z),
1.f - 2.f * (x * x + z * z),
2.f * (y * z + w * x),
2.f * (x * z + w * y),
2.f * (y * z - w * x),
1.f - 2.f * (x * x + y * y)
);
}
inline __device__ glm::vec4
quat_to_rotmat_vjp(const glm::vec4 quat, const glm::mat3 v_R) {
float s = rsqrtf(
quat.w * quat.w + quat.x * quat.x + quat.y * quat.y + quat.z * quat.z
);
float w = quat.x * s;
float x = quat.y * s;
float y = quat.z * s;
float z = quat.w * s;
glm::vec4 v_quat;
// v_R is COLUMN MAJOR
// w element stored in x field
v_quat.x =
2.f * (
// v_quat.w = 2.f * (
x * (v_R[1][2] - v_R[2][1]) + y * (v_R[2][0] - v_R[0][2]) +
z * (v_R[0][1] - v_R[1][0])
);
// x element in y field
v_quat.y =
2.f *
(
// v_quat.x = 2.f * (
-2.f * x * (v_R[1][1] + v_R[2][2]) + y * (v_R[0][1] + v_R[1][0]) +
z * (v_R[0][2] + v_R[2][0]) + w * (v_R[1][2] - v_R[2][1])
);
// y element in z field
v_quat.z =
2.f *
(
// v_quat.y = 2.f * (
x * (v_R[0][1] + v_R[1][0]) - 2.f * y * (v_R[0][0] + v_R[2][2]) +
z * (v_R[1][2] + v_R[2][1]) + w * (v_R[2][0] - v_R[0][2])
);
// z element in w field
v_quat.w =
2.f *
(
// v_quat.z = 2.f * (
x * (v_R[0][2] + v_R[2][0]) + y * (v_R[1][2] + v_R[2][1]) -
2.f * z * (v_R[0][0] + v_R[1][1]) + w * (v_R[0][1] - v_R[1][0])
);
return v_quat;
}
inline __device__ glm::mat3
scale_to_mat(const glm::vec2 scale, const float glob_scale) {
glm::mat3 S = glm::mat3(1.f);
S[0][0] = glob_scale * scale.x;
S[1][1] = glob_scale * scale.y;
// S[2][2] = glob_scale * scale.z;
return S;
}
#define CHECK_CUDA(A, debug) \
A; if(debug) { \
auto ret = cudaDeviceSynchronize(); \
if (ret != cudaSuccess) { \
std::cerr << "\n[CUDA ERROR] in " << __FILE__ << "\nLine " << __LINE__ << ": " << cudaGetErrorString(ret); \
throw std::runtime_error(cudaGetErrorString(ret)); \
} \
}
#endif