""" Evaluate P-FID between two batches of point clouds. The point cloud batches should be saved to two npz files, where there is an arr_0 key of shape [N x K x 3], where K is the dimensionality of each point cloud and N is the number of clouds. """ import argparse from point_e.evals.feature_extractor import PointNetClassifier, get_torch_devices from point_e.evals.fid_is import compute_statistics from point_e.evals.npz_stream import NpzStreamer def main(): parser = argparse.ArgumentParser() parser.add_argument("--cache_dir", type=str, default=None) parser.add_argument("batch_1", type=str) parser.add_argument("batch_2", type=str) args = parser.parse_args() print("creating classifier...") clf = PointNetClassifier(devices=get_torch_devices(), cache_dir=args.cache_dir) print("computing first batch activations") features_1, _ = clf.features_and_preds(NpzStreamer(args.batch_1)) stats_1 = compute_statistics(features_1) del features_1 features_2, _ = clf.features_and_preds(NpzStreamer(args.batch_2)) stats_2 = compute_statistics(features_2) del features_2 print(f"P-FID: {stats_1.frechet_distance(stats_2)}") if __name__ == "__main__": main()