""" Evaluate P-IS of a batch of point clouds. The point cloud batch should be saved to an npz file, where there is an arr_0 key of shape [N x K x 3], where K is the dimensionality of each point cloud and N is the number of clouds. """ import argparse from point_e.evals.feature_extractor import PointNetClassifier, get_torch_devices from point_e.evals.fid_is import compute_inception_score from point_e.evals.npz_stream import NpzStreamer def main(): parser = argparse.ArgumentParser() parser.add_argument("--cache_dir", type=str, default=None) parser.add_argument("batch", type=str) args = parser.parse_args() print("creating classifier...") clf = PointNetClassifier(devices=get_torch_devices(), cache_dir=args.cache_dir) print("computing batch predictions") _, preds = clf.features_and_preds(NpzStreamer(args.batch)) print(f"P-IS: {compute_inception_score(preds)}") if __name__ == "__main__": main()