/* * Copyright (C) 2023, Inria * GRAPHDECO research group, https://team.inria.fr/graphdeco * All rights reserved. * * This software is free for non-commercial, research and evaluation use * under the terms of the LICENSE.md file. * * For inquiries contact george.drettakis@inria.fr */ #ifndef CUDA_RASTERIZER_AUXILIARY_H_INCLUDED #define CUDA_RASTERIZER_AUXILIARY_H_INCLUDED #include "config.h" #include "stdio.h" #define BLOCK_SIZE (BLOCK_X * BLOCK_Y) #define NUM_WARPS (BLOCK_SIZE/32) #define TIGHTBBOX 0 #define RENDER_AXUTILITY 1 #define DEPTH_OFFSET 0 #define ALPHA_OFFSET 1 #define NORMAL_OFFSET 2 #define MIDDEPTH_OFFSET 5 #define DISTORTION_OFFSET 6 // #define MEDIAN_WEIGHT_OFFSET 7 // distortion helper macros #define BACKFACE_CULL 1 #define DUAL_VISIABLE 1 // #define NEAR_PLANE 0.2 // #define FAR_PLANE 100.0 #define DETACH_WEIGHT 0 __device__ const float near_n = 0.2; __device__ const float far_n = 100.0; __device__ const float FilterSize = 0.707106; // sqrt(2) / 2 __device__ const float FilterInvSquare = 2.0f; // Spherical harmonics coefficients __device__ const float SH_C0 = 0.28209479177387814f; __device__ const float SH_C1 = 0.4886025119029199f; __device__ const float SH_C2[] = { 1.0925484305920792f, -1.0925484305920792f, 0.31539156525252005f, -1.0925484305920792f, 0.5462742152960396f }; __device__ const float SH_C3[] = { -0.5900435899266435f, 2.890611442640554f, -0.4570457994644658f, 0.3731763325901154f, -0.4570457994644658f, 1.445305721320277f, -0.5900435899266435f }; __forceinline__ __device__ float ndc2Pix(float v, int S) { return ((v + 1.0) * S - 1.0) * 0.5; } __forceinline__ __device__ void getRect(const float2 p, int max_radius, uint2& rect_min, uint2& rect_max, dim3 grid) { rect_min = { min(grid.x, max((int)0, (int)((p.x - max_radius) / BLOCK_X))), min(grid.y, max((int)0, (int)((p.y - max_radius) / BLOCK_Y))) }; rect_max = { min(grid.x, max((int)0, (int)((p.x + max_radius + BLOCK_X - 1) / BLOCK_X))), min(grid.y, max((int)0, (int)((p.y + max_radius + BLOCK_Y - 1) / BLOCK_Y))) }; } __forceinline__ __device__ float3 transformPoint4x3(const float3& p, const float* matrix) { float3 transformed = { matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z + matrix[12], matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z + matrix[13], matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z + matrix[14], }; return transformed; } __forceinline__ __device__ float4 transformPoint4x4(const float3& p, const float* matrix) { float4 transformed = { matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z + matrix[12], matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z + matrix[13], matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z + matrix[14], matrix[3] * p.x + matrix[7] * p.y + matrix[11] * p.z + matrix[15] }; return transformed; } __forceinline__ __device__ float3 transformVec4x3(const float3& p, const float* matrix) { float3 transformed = { matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z, matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z, matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z, }; return transformed; } __forceinline__ __device__ float3 transformVec4x3Transpose(const float3& p, const float* matrix) { float3 transformed = { matrix[0] * p.x + matrix[1] * p.y + matrix[2] * p.z, matrix[4] * p.x + matrix[5] * p.y + matrix[6] * p.z, matrix[8] * p.x + matrix[9] * p.y + matrix[10] * p.z, }; return transformed; } __forceinline__ __device__ float dnormvdz(float3 v, float3 dv) { float sum2 = v.x * v.x + v.y * v.y + v.z * v.z; float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2); float dnormvdz = (-v.x * v.z * dv.x - v.y * v.z * dv.y + (sum2 - v.z * v.z) * dv.z) * invsum32; return dnormvdz; } __forceinline__ __device__ float3 dnormvdv(float3 v, float3 dv) { float sum2 = v.x * v.x + v.y * v.y + v.z * v.z; float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2); float3 dnormvdv; dnormvdv.x = ((+sum2 - v.x * v.x) * dv.x - v.y * v.x * dv.y - v.z * v.x * dv.z) * invsum32; dnormvdv.y = (-v.x * v.y * dv.x + (sum2 - v.y * v.y) * dv.y - v.z * v.y * dv.z) * invsum32; dnormvdv.z = (-v.x * v.z * dv.x - v.y * v.z * dv.y + (sum2 - v.z * v.z) * dv.z) * invsum32; return dnormvdv; } __forceinline__ __device__ float4 dnormvdv(float4 v, float4 dv) { float sum2 = v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w; float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2); float4 vdv = { v.x * dv.x, v.y * dv.y, v.z * dv.z, v.w * dv.w }; float vdv_sum = vdv.x + vdv.y + vdv.z + vdv.w; float4 dnormvdv; dnormvdv.x = ((sum2 - v.x * v.x) * dv.x - v.x * (vdv_sum - vdv.x)) * invsum32; dnormvdv.y = ((sum2 - v.y * v.y) * dv.y - v.y * (vdv_sum - vdv.y)) * invsum32; dnormvdv.z = ((sum2 - v.z * v.z) * dv.z - v.z * (vdv_sum - vdv.z)) * invsum32; dnormvdv.w = ((sum2 - v.w * v.w) * dv.w - v.w * (vdv_sum - vdv.w)) * invsum32; return dnormvdv; } __forceinline__ __device__ float3 cross(float3 a, float3 b){return make_float3(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x);} __forceinline__ __device__ float3 operator*(float3 a, float3 b){return make_float3(a.x * b.x, a.y * b.y, a.z*b.z);} __forceinline__ __device__ float2 operator*(float2 a, float2 b){return make_float2(a.x * b.x, a.y * b.y);} __forceinline__ __device__ float3 operator*(float f, float3 a){return make_float3(f * a.x, f * a.y, f * a.z);} __forceinline__ __device__ float2 operator*(float f, float2 a){return make_float2(f * a.x, f * a.y);} __forceinline__ __device__ float3 operator-(float3 a, float3 b){return make_float3(a.x - b.x, a.y - b.y, a.z - b.z);} __forceinline__ __device__ float2 operator-(float2 a, float2 b){return make_float2(a.x - b.x, a.y - b.y);} __forceinline__ __device__ float sumf3(float3 a){return a.x + a.y + a.z;} __forceinline__ __device__ float sumf2(float2 a){return a.x + a.y;} __forceinline__ __device__ float3 sqrtf3(float3 a){return make_float3(sqrtf(a.x), sqrtf(a.y), sqrtf(a.z));} __forceinline__ __device__ float2 sqrtf2(float2 a){return make_float2(sqrtf(a.x), sqrtf(a.y));} __forceinline__ __device__ float3 minf3(float f, float3 a){return make_float3(min(f, a.x), min(f, a.y), min(f, a.z));} __forceinline__ __device__ float2 minf2(float f, float2 a){return make_float2(min(f, a.x), min(f, a.y));} __forceinline__ __device__ float3 maxf3(float f, float3 a){return make_float3(max(f, a.x), max(f, a.y), max(f, a.z));} __forceinline__ __device__ float2 maxf2(float f, float2 a){return make_float2(max(f, a.x), max(f, a.y));} __forceinline__ __device__ bool in_frustum(int idx, const float* orig_points, const float* viewmatrix, const float* projmatrix, bool prefiltered, float3& p_view) { float3 p_orig = { orig_points[3 * idx], orig_points[3 * idx + 1], orig_points[3 * idx + 2] }; // Bring points to screen space float4 p_hom = transformPoint4x4(p_orig, projmatrix); float p_w = 1.0f / (p_hom.w + 0.0000001f); float3 p_proj = { p_hom.x * p_w, p_hom.y * p_w, p_hom.z * p_w }; p_view = transformPoint4x3(p_orig, viewmatrix); if (p_view.z <= 0.2f)// || ((p_proj.x < -1.3 || p_proj.x > 1.3 || p_proj.y < -1.3 || p_proj.y > 1.3))) { if (prefiltered) { printf("Point is filtered although prefiltered is set. This shouldn't happen!"); __trap(); } return false; } return true; } // adopt from gsplat: https://github.com/nerfstudio-project/gsplat/blob/main/gsplat/cuda/csrc/forward.cu inline __device__ glm::mat3 quat_to_rotmat(const glm::vec4 quat) { // quat to rotation matrix float s = rsqrtf( quat.w * quat.w + quat.x * quat.x + quat.y * quat.y + quat.z * quat.z ); float w = quat.x * s; float x = quat.y * s; float y = quat.z * s; float z = quat.w * s; // glm matrices are column-major return glm::mat3( 1.f - 2.f * (y * y + z * z), 2.f * (x * y + w * z), 2.f * (x * z - w * y), 2.f * (x * y - w * z), 1.f - 2.f * (x * x + z * z), 2.f * (y * z + w * x), 2.f * (x * z + w * y), 2.f * (y * z - w * x), 1.f - 2.f * (x * x + y * y) ); } inline __device__ glm::vec4 quat_to_rotmat_vjp(const glm::vec4 quat, const glm::mat3 v_R) { float s = rsqrtf( quat.w * quat.w + quat.x * quat.x + quat.y * quat.y + quat.z * quat.z ); float w = quat.x * s; float x = quat.y * s; float y = quat.z * s; float z = quat.w * s; glm::vec4 v_quat; // v_R is COLUMN MAJOR // w element stored in x field v_quat.x = 2.f * ( // v_quat.w = 2.f * ( x * (v_R[1][2] - v_R[2][1]) + y * (v_R[2][0] - v_R[0][2]) + z * (v_R[0][1] - v_R[1][0]) ); // x element in y field v_quat.y = 2.f * ( // v_quat.x = 2.f * ( -2.f * x * (v_R[1][1] + v_R[2][2]) + y * (v_R[0][1] + v_R[1][0]) + z * (v_R[0][2] + v_R[2][0]) + w * (v_R[1][2] - v_R[2][1]) ); // y element in z field v_quat.z = 2.f * ( // v_quat.y = 2.f * ( x * (v_R[0][1] + v_R[1][0]) - 2.f * y * (v_R[0][0] + v_R[2][2]) + z * (v_R[1][2] + v_R[2][1]) + w * (v_R[2][0] - v_R[0][2]) ); // z element in w field v_quat.w = 2.f * ( // v_quat.z = 2.f * ( x * (v_R[0][2] + v_R[2][0]) + y * (v_R[1][2] + v_R[2][1]) - 2.f * z * (v_R[0][0] + v_R[1][1]) + w * (v_R[0][1] - v_R[1][0]) ); return v_quat; } inline __device__ glm::mat3 scale_to_mat(const glm::vec2 scale, const float glob_scale) { glm::mat3 S = glm::mat3(1.f); S[0][0] = glob_scale * scale.x; S[1][1] = glob_scale * scale.y; // S[2][2] = glob_scale * scale.z; return S; } #define CHECK_CUDA(A, debug) \ A; if(debug) { \ auto ret = cudaDeviceSynchronize(); \ if (ret != cudaSuccess) { \ std::cerr << "\n[CUDA ERROR] in " << __FILE__ << "\nLine " << __LINE__ << ": " << cudaGetErrorString(ret); \ throw std::runtime_error(cudaGetErrorString(ret)); \ } \ } #endif