import torch.nn as nn from inspect import isfunction import math import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat from pdb import set_trace as st from timm.models.vision_transformer import Mlp from ldm.modules.attention import MemoryEfficientCrossAttention from .dit_models_xformers import DiT, get_2d_sincos_pos_embed, DiTBlock, FinalLayer, t2i_modulate, PixelArtTextCondDiTBlock, T2IFinalLayer, approx_gelu from torch.nn import LayerNorm from vit.vit_triplane import XYZPosEmbed class DiT_TriLatent(DiT): # DiT with 3D_aware operations def __init__( self, input_size=32, patch_size=2, in_channels=4, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4, class_dropout_prob=0.1, num_classes=1000, learn_sigma=True, mixing_logit_init=-3, mixed_prediction=True, context_dim=False, roll_out=False, vit_blk=DiTBlock, final_layer_blk=FinalLayer, ): super().__init__(input_size, patch_size, in_channels, hidden_size, depth, num_heads, mlp_ratio, class_dropout_prob, num_classes, learn_sigma, mixing_logit_init, mixed_prediction, context_dim, roll_out, vit_blk, final_layer_blk) assert self.roll_out def init_PE_3D_aware(self): self.pos_embed = nn.Parameter(torch.zeros( 1, self.plane_n * self.x_embedder.num_patches, self.embed_dim), requires_grad=False) # Initialize (and freeze) pos_embed by sin-cos embedding: p = int(self.x_embedder.num_patches**0.5) D = self.pos_embed.shape[-1] grid_size = (self.plane_n, p * p) # B n HW C pos_embed = get_2d_sincos_pos_embed(D, grid_size).reshape( self.plane_n * p * p, D) # H*W, D self.pos_embed.data.copy_( torch.from_numpy(pos_embed).float().unsqueeze(0)) def initialize_weights(self): super().initialize_weights() # ! add 3d-aware PE self.init_PE_3D_aware() def forward(self, x, timesteps=None, context=None, y=None, get_attr='', **kwargs): """ Forward pass of DiT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels """ # t = timesteps assert context is not None t = self.t_embedder(timesteps) # (N, D) # if self.roll_out: # ! x = rearrange(x, 'b (c n) h w->(b n) c h w', n=3) # downsample with same conv x = self.x_embedder(x) # (b n) c h/f w/f x = rearrange(x, '(b n) l c -> b (n l) c', n=3) x = x + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 # if self.roll_out: # ! roll-out in the L dim, not B dim. add condition to all tokens. # x = rearrange(x, '(b n) l c ->b (n l) c', n=3) # assert context.ndim == 2 if isinstance(context, dict): context = context['crossattn'] # sgm conditioner compat context = self.clip_text_proj(context) # c = t + context # else: # c = t # BS 1024 for blk_idx, block in enumerate(self.blocks): # if self.roll_out: if False: if blk_idx % 2 == 0: # with-in plane self attention x = rearrange(x, 'b (n l) c -> (b n) l c', n=3) x = block(x, repeat(t, 'b c -> (b n) c ', n=3), # TODO, calculate once repeat(context, 'b l c -> (b n) l c ', n=3)) # (N, T, D) else: # global attention x = rearrange(x, '(b n) l c -> b (n l) c ', n=self.plane_n) x = block(x, t, context) # (N, T, D) else: x = block(x, t, context) # (N, T, D) # todo later x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) if self.roll_out: # move n from L to B axis x = rearrange(x, 'b (n l) c ->(b n) l c', n=3) x = self.unpatchify(x) # (N, out_channels, H, W) if self.roll_out: # move n from L to B axis x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3) # x = rearrange(x, 'b n) c h w -> b (n c) h w', n=3) # cast to float32 for better accuracy x = x.to(torch.float32).contiguous() # st() return x class DiT_TriLatent_PixelArt(DiT_TriLatent): # DiT with 3D_aware operations def __init__( self, input_size=32, patch_size=2, in_channels=4, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4, class_dropout_prob=0.1, num_classes=1000, learn_sigma=True, mixing_logit_init=-3, mixed_prediction=True, context_dim=False, roll_out=False, vit_blk=DiTBlock, final_layer_blk=FinalLayer, ): super().__init__(input_size, patch_size, in_channels, hidden_size, depth, num_heads, mlp_ratio, class_dropout_prob, num_classes, learn_sigma, mixing_logit_init, mixed_prediction, context_dim, roll_out, vit_blk, final_layer_blk) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) del self.clip_text_proj self.cap_embedder = nn.Sequential( # TODO, init with zero here. LayerNorm(context_dim), nn.Linear( context_dim, hidden_size, ), ) nn.init.constant_(self.cap_embedder[-1].weight, 0) nn.init.constant_(self.cap_embedder[-1].bias, 0) def forward(self, x, timesteps=None, context=None, y=None, get_attr='', **kwargs): """ Forward pass of DiT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels """ # t = timesteps assert context is not None clip_cls_token = self.cap_embedder(context['vector']) # pooled t = self.t_embedder(timesteps) + clip_cls_token # (N, D) t0 = self.adaLN_modulation(t) # single-adaLN, B 6144 # if self.roll_out: # ! x = rearrange(x, 'b (c n) h w->(b n) c h w', n=3) # downsample with same conv x = self.x_embedder(x) # (b n) c h/f w/f x = rearrange(x, '(b n) l c -> b (n l) c', n=3) x = x + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 # if self.roll_out: # ! roll-out in the L dim, not B dim. add condition to all tokens. # x = rearrange(x, '(b n) l c ->b (n l) c', n=3) # assert context.ndim == 2 if isinstance(context, dict): context = context['crossattn'] # sgm conditioner compat # context = self.clip_text_proj(context) # ! with rmsnorm here for # c = t + context # else: # c = t # BS 1024 for blk_idx, block in enumerate(self.blocks): x = block(x, t0, context) # (N, T, D) # todo later x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) if self.roll_out: # move n from L to B axis x = rearrange(x, 'b (n l) c ->(b n) l c', n=3) x = self.unpatchify(x) # (N, out_channels, H, W) if self.roll_out: # move n from L to B axis x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3) # x = rearrange(x, 'b n) c h w -> b (n c) h w', n=3) # cast to float32 for better accuracy x = x.to(torch.float32).contiguous() # st() return x # ! compat issue def forward_with_cfg(self, x, t, context, cfg_scale): """ Forward pass of SiT, but also batches the unconSiTional forward pass for classifier-free guidance. """ # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb # half = x[: len(x) // 2] # combined = torch.cat([half, half], dim=0) eps = self.forward(x, t, context) # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] # eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) return eps # PCD, general single-stage model. class DiT_PCD_PixelArt(DiT_TriLatent_PixelArt): # DiT with 3D_aware operations def __init__( self, input_size=32, patch_size=2, in_channels=4, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4, class_dropout_prob=0.1, num_classes=1000, learn_sigma=True, mixing_logit_init=-3, mixed_prediction=True, context_dim=False, roll_out=False, vit_blk=PixelArtTextCondDiTBlock, final_layer_blk=FinalLayer, ): super().__init__(input_size, patch_size, in_channels, hidden_size, depth, num_heads, mlp_ratio, class_dropout_prob, num_classes, learn_sigma, mixing_logit_init, mixed_prediction, context_dim, roll_out, vit_blk, final_layer_blk) # an MLP to transform the input 19-dim feature to high-dim. self.x_embedder = Mlp(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=approx_gelu, drop=0) del self.pos_embed def forward(self, x, timesteps=None, context=None, y=None, get_attr='', **kwargs): """ Forward pass of DiT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels """ # t = timesteps assert context is not None clip_cls_token = self.cap_embedder(context['caption_vector']) # pooled t = self.t_embedder(timesteps) + clip_cls_token # (N, D) t0 = self.adaLN_modulation(t) # single-adaLN, B 6144 x = self.x_embedder(x) # assert context.ndim == 2 if isinstance(context, dict): context = context['caption_crossattn'] # sgm conditioner compat # loop dit block for blk_idx, block in enumerate(self.blocks): x = block(x, t0, context) # (N, T, D) x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) # cast to float32 for better accuracy x = x.to(torch.float32).contiguous() return x # ! two-stage version, the second-stage here, for text pretraining. class DiT_PCD_PixelArt_tofeat(DiT_PCD_PixelArt): # DiT with 3D_aware operations def __init__( self, input_size=32, patch_size=2, in_channels=4, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4, class_dropout_prob=0.1, num_classes=1000, learn_sigma=True, mixing_logit_init=-3, mixed_prediction=True, context_dim=False, roll_out=False, vit_blk=DiTBlock, final_layer_blk=FinalLayer, use_pe_cond=True, ): super().__init__(input_size, patch_size, in_channels, hidden_size, depth, num_heads, mlp_ratio, class_dropout_prob, num_classes, learn_sigma, mixing_logit_init, mixed_prediction, context_dim, roll_out, PixelArtTextCondDiTBlock, final_layer_blk) self.use_pe_cond = use_pe_cond if use_pe_cond: self.xyz_pos_embed = XYZPosEmbed(hidden_size) else: self.x_embedder = Mlp(in_features=in_channels+3, hidden_features=hidden_size, out_features=hidden_size, act_layer=approx_gelu, drop=0) def forward(self, x, timesteps=None, context=None, y=None, get_attr='', **kwargs): """ Forward pass of DiT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels """ # t = timesteps assert isinstance(context, dict) # dino_spatial_token = rearrange(context['concat'], 'b v l c -> b (v l) c') # flatten MV dino features. # t = self.t_embedder(timesteps) clip_cls_token = self.cap_embedder(context['caption_vector']) # pooled caption_crossattn, fps_xyz = context['caption_crossattn'], context['fps-xyz'] t = self.t_embedder(timesteps) + clip_cls_token # (N, D) t0 = self.adaLN_modulation(t) # single-adaLN, B 6144 if self.use_pe_cond: x = self.x_embedder(x) + self.xyz_pos_embed(fps_xyz) # point-wise addition else: # use concat to add info x = torch.cat([fps_xyz, x], dim=-1) x = self.x_embedder(x) # add a norm layer here, as in point-e # x = self.ln_pre(x) for blk_idx, block in enumerate(self.blocks): x = block(x, t0, caption_crossattn) # add a norm layer here, as in point-e # x = self.ln_post(x) x = self.final_layer(x, t) # no loss on the xyz side x = x.to(torch.float32).contiguous() return x ################################################################################# # DiT_TriLatent Configs # ################################################################################# def DiT_XL_2(**kwargs): return DiT_TriLatent(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs) def DiT_L_2(**kwargs): return DiT_TriLatent(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs) def DiT_B_2(**kwargs): return DiT_TriLatent(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs) def DiT_B_1(**kwargs): return DiT_TriLatent(depth=12, hidden_size=768, patch_size=1, num_heads=12, **kwargs) def DiT_B_Pixelart_2(**kwargs): return DiT_TriLatent_PixelArt(depth=12, hidden_size=768, patch_size=2, num_heads=12, # vit_blk=PixelArtTextCondDiTBlock, final_layer_blk=T2IFinalLayer, **kwargs) def DiT_L_Pixelart_2(**kwargs): return DiT_TriLatent_PixelArt(depth=24, hidden_size=1024, patch_size=2, num_heads=16, # vit_blk=PixelArtTextCondDiTBlock, final_layer_blk=T2IFinalLayer, **kwargs) # PCD-DiT def DiT_PCD_B(**kwargs): return DiT_PCD_PixelArt(depth=12, hidden_size=768, patch_size=1, num_heads=12, **kwargs) def DiT_PCD_L(**kwargs): return DiT_PCD_PixelArt(depth=24, hidden_size=1024, patch_size=1, num_heads=16, **kwargs) def DiT_PCD_B_tofeat(**kwargs): return DiT_PCD_PixelArt_tofeat(depth=12, hidden_size=768, patch_size=1, num_heads=12, **kwargs) def DiT_PCD_L_tofeat(**kwargs): return DiT_PCD_PixelArt_tofeat(depth=24, hidden_size=1024, patch_size=1, num_heads=16, **kwargs) def DiT_PCD_XL_tofeat(**kwargs): return DiT_PCD_PixelArt_tofeat(depth=28, hidden_size=1152, patch_size=1, num_heads=16, **kwargs) DiT_models = { 'DiT-XL/2': DiT_XL_2, 'DiT-L/2': DiT_L_2, 'DiT-PixelArt-L/2': DiT_L_Pixelart_2, 'DiT-PixelArt-B/2': DiT_B_Pixelart_2, 'DiT-B/2': DiT_B_2, 'DiT-B/1': DiT_B_1, 'DiT-PCD-B': DiT_PCD_B, 'DiT-PCD-L': DiT_PCD_L, 'DiT-PCD-B-stage2-xyz2feat': DiT_PCD_B_tofeat, 'DiT-PCD-L-stage2-xyz2feat': DiT_PCD_L_tofeat, 'DiT-PCD-XL-stage2-xyz2feat': DiT_PCD_XL_tofeat, # 'DiT-PCD-L-stage1-text': DiT_PCD_L_tofeat, }