""" Train a diffusion model on images. """ import sys import os sys.path.append('.') import torch.distributed as dist import torch as th import torch.multiprocessing as mp import argparse import dnnlib from guided_diffusion import dist_util, logger from guided_diffusion.script_util import ( args_to_dict, add_dict_to_argparser, ) from nsr.train_util import TrainLoop3DRec as TrainLoop from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults from datasets.shapenet import load_data, load_eval_data, load_memory_data from nsr.losses.builder import E3DGELossClass from pdb import set_trace as st th.backends.cuda.matmul.allow_tf32 = True th.backends.cudnn.allow_tf32 = True th.backends.cudnn.enabled = True SEED = 0 def training_loop(args): # def training_loop(args): dist_util.setup_dist(args) # dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count()) print(f"{args.local_rank=} init complete") th.cuda.set_device(args.local_rank) th.cuda.manual_seed_all(SEED) # logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) logger.configure(dir=args.logdir) logger.log("creating data loader...") # TODO, load shapenet data # data = load_data( # if args.overfitting: # data = load_memory_data( # file_path=args.data_dir, # batch_size=args.batch_size, # reso=args.image_size, # reso_encoder=args.image_size_encoder, # 224 -> 128 # num_workers=args.num_workers, # load_depth=args.depth_lambda > 0 # # load_depth=True # for evaluation # ) # else: # data = load_data( # file_path=args.data_dir, # batch_size=args.batch_size, # reso=args.image_size, # reso_encoder=args.image_size_encoder, # 224 -> 128 # num_workers=args.num_workers, # load_depth=args.depth_lambda > 0 # # load_depth=True # for evaluation # ) eval_data = load_eval_data( file_path=args.data_dir, batch_size=args.eval_batch_size, reso=args.image_size, reso_encoder=args.image_size_encoder, # 224 -> 128 num_workers=args.num_workers, load_depth=True # for evaluation ) # try dry run # batch = next(data) # batch = None # logger.log("creating model and diffusion...") logger.log("creating encoder and NSR decoder...") # device = dist_util.dev() device = th.device("cuda", args.local_rank) auto_encoder = create_3DAE_model( **args_to_dict(args, encoder_and_nsr_defaults().keys())) auto_encoder.to(device) auto_encoder.eval() # dist_util.sync_params(auto_encoder.named_parameters()) # auto_encoder.train() # let all processes sync up before starting with a new epoch of training dist_util.synchronize() # noise = th.randn(1, 14 * 14, 384).to(device) # B, L, C # noise = th.randn(1, 3,224,224).to(device) # img = auto_encoder(noise, th.zeros(1, 25).to(device)) # print(img['image'].shape) # if dist_util.get_rank()==0: # print(auto_encoder) # schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) loss_class = E3DGELossClass(device, opt).to(device) # logger.log("training...") TrainLoop( rec_model=auto_encoder, loss_class=loss_class, # diffusion=diffusion, data=None, eval_interval=-1, eval_data=eval_data, # data=batch, batch_size=args.batch_size, microbatch=args.microbatch, lr=args.lr, ema_rate=args.ema_rate, log_interval=args.log_interval, save_interval=args.save_interval, resume_checkpoint=args.resume_checkpoint, resume_cldm_checkpoint=args.resume_cldm_checkpoint, use_fp16=args.use_fp16, fp16_scale_growth=args.fp16_scale_growth, weight_decay=args.weight_decay, lr_anneal_steps=args.lr_anneal_steps, ).eval_loop() # ! overfitting def create_argparser(**kwargs): # defaults.update(model_and_diffusion_defaults()) defaults = dict( overfitting=False, num_workers=4, image_size=128, image_size_encoder=224, iterations=150000, anneal_lr=False, lr=5e-5, weight_decay=0.0, lr_anneal_steps=0, batch_size=1, eval_batch_size=8, microbatch=-1, # -1 disables microbatches ema_rate="0.9999", # comma-separated list of EMA values log_interval=10, save_interval=10000, resume_checkpoint="", use_fp16=False, fp16_scale_growth=1e-3, data_dir="", # load_depth=False, # TODO logdir="/mnt/lustre/yslan/logs/nips23/", ) defaults.update(encoder_and_nsr_defaults()) # type: ignore defaults.update(loss_defaults()) parser = argparse.ArgumentParser() add_dict_to_argparser(parser, defaults) return parser if __name__ == "__main__": os.environ[ "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. os.environ["TORCH_CPP_LOG_LEVEL"]="INFO" master_addr = '127.0.0.1' master_port = dist_util._find_free_port() args = create_argparser().parse_args() args.local_rank = int(os.environ["LOCAL_RANK"]) args.gpus = th.cuda.device_count() args.master_addr = master_addr args.master_port = master_port # Launch processes. print('Launching processes...') training_loop(args)