# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: LicenseRef-NvidiaProprietary # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. """Streaming images and labels from datasets created with dataset_tool.py.""" import cv2 import os import numpy as np import zipfile import PIL.Image import json import torch import dnnlib from torchvision import transforms from pdb import set_trace as st from .shapenet import LMDBDataset_MV_Compressed, decompress_array try: import pyspng except ImportError: pyspng = None #---------------------------------------------------------------------------- # copide from eg3d/train.py def init_dataset_kwargs(data, class_name='datasets.eg3d_dataset.ImageFolderDataset', reso_gt=128): # try: # if data == 'None': # dataset_kwargs = dnnlib.EasyDict({}) # # dataset_kwargs.name = 'eg3d_dataset' # dataset_kwargs.resolution = 128 # dataset_kwargs.use_labels = False # dataset_kwargs.max_size = 70000 # return dataset_kwargs, 'eg3d_dataset' dataset_kwargs = dnnlib.EasyDict(class_name=class_name, reso_gt=reso_gt, path=data, use_labels=True, max_size=None, xflip=False) dataset_obj = dnnlib.util.construct_class_by_name( **dataset_kwargs) # Subclass of training.dataset.Dataset. dataset_kwargs.resolution = dataset_obj.resolution # Be explicit about resolution. dataset_kwargs.use_labels = dataset_obj.has_labels # Be explicit about labels. dataset_kwargs.max_size = len( dataset_obj) # Be explicit about dataset size. return dataset_kwargs, dataset_obj.name # except IOError as err: # raise click.ClickException(f'--data: {err}') class Dataset(torch.utils.data.Dataset): def __init__( self, name, # Name of the dataset. raw_shape, # Shape of the raw image data (NCHW). reso_gt=128, max_size=None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip. use_labels=False, # Enable conditioning labels? False = label dimension is zero. xflip=False, # Artificially double the size of the dataset via x-flips. Applied after max_size. random_seed=0, # Random seed to use when applying max_size. ): self._name = name self._raw_shape = list(raw_shape) self._use_labels = use_labels self._raw_labels = None self._label_shape = None # self.reso_gt = 128 self.reso_gt = reso_gt # ! hard coded self.reso_encoder = 224 # Apply max_size. self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64) # self._raw_idx = np.arange(self.__len__(), dtype=np.int64) if (max_size is not None) and (self._raw_idx.size > max_size): np.random.RandomState(random_seed).shuffle(self._raw_idx) self._raw_idx = np.sort(self._raw_idx[:max_size]) # Apply xflip. self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8) if xflip: self._raw_idx = np.tile(self._raw_idx, 2) self._xflip = np.concatenate( [self._xflip, np.ones_like(self._xflip)]) # dino encoder normalizer self.normalize_for_encoder_input = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), transforms.Resize(size=(self.reso_encoder, self.reso_encoder), antialias=True), # type: ignore ]) self.normalize_for_gt = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), transforms.Resize(size=(self.reso_gt, self.reso_gt), antialias=True), # type: ignore ]) def _get_raw_labels(self): if self._raw_labels is None: self._raw_labels = self._load_raw_labels( ) if self._use_labels else None if self._raw_labels is None: self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32) assert isinstance(self._raw_labels, np.ndarray) # assert self._raw_labels.shape[0] == self._raw_shape[0] assert self._raw_labels.dtype in [np.float32, np.int64] if self._raw_labels.dtype == np.int64: assert self._raw_labels.ndim == 1 assert np.all(self._raw_labels >= 0) self._raw_labels_std = self._raw_labels.std(0) return self._raw_labels def close(self): # to be overridden by subclass pass def _load_raw_image(self, raw_idx): # to be overridden by subclass raise NotImplementedError def _load_raw_labels(self): # to be overridden by subclass raise NotImplementedError def __getstate__(self): return dict(self.__dict__, _raw_labels=None) def __del__(self): try: self.close() except: pass def __len__(self): return self._raw_idx.size # return self._get_raw_labels().shape[0] def __getitem__(self, idx): # print(self._raw_idx[idx], idx) matte = self._load_raw_matte(self._raw_idx[idx]) assert isinstance(matte, np.ndarray) assert list(matte.shape)[1:] == self.image_shape[1:] if self._xflip[idx]: assert matte.ndim == 1 # CHW matte = matte[:, :, ::-1] # matte_orig = matte.copy().astype(np.float32) / 255 matte_orig = matte.copy().astype(np.float32) # segmentation version # assert matte_orig.max() == 1 matte = np.transpose(matte, # (1, 2, 0)).astype(np.float32) / 255 # [0,1] range (1, 2, 0)).astype(np.float32) # [0,1] range matte = cv2.resize(matte, (self.reso_gt, self.reso_gt), interpolation=cv2.INTER_NEAREST) assert matte.min() >= 0 and matte.max( ) <= 1, f'{matte.min(), matte.max()}' if matte.ndim == 3: # H, W matte = matte[..., 0] image = self._load_raw_image(self._raw_idx[idx]) assert isinstance(image, np.ndarray) assert list(image.shape) == self.image_shape assert image.dtype == np.uint8 if self._xflip[idx]: assert image.ndim == 3 # CHW image = image[:, :, ::-1] # blending # blending = True blending = False if blending: image = image * matte_orig + (1 - matte_orig) * cv2.GaussianBlur( image, (5, 5), cv2.BORDER_DEFAULT) # image = image * matte_orig image = np.transpose(image, (1, 2, 0)).astype( np.float32 ) / 255 # H W C for torchvision process, normalize to [0,1] image_sr = torch.from_numpy(image)[..., :3].permute( 2, 0, 1) * 2 - 1 # normalize to [-1,1] image_to_encoder = self.normalize_for_encoder_input(image) image_gt = cv2.resize(image, (self.reso_gt, self.reso_gt), interpolation=cv2.INTER_AREA) image_gt = torch.from_numpy(image_gt)[..., :3].permute( 2, 0, 1) * 2 - 1 # normalize to [-1,1] return dict( c=self.get_label(idx), img_to_encoder=image_to_encoder, # 224 img_sr=image_sr, # 512 img=image_gt, # [-1,1] range # depth=torch.zeros_like(image_gt)[0, ...] # type: ignore depth=matte, depth_mask=matte, # depth_mask=matte > 0, # alpha=matte, ) # return dict here def get_label(self, idx): label = self._get_raw_labels()[self._raw_idx[idx]] if label.dtype == np.int64: onehot = np.zeros(self.label_shape, dtype=np.float32) onehot[label] = 1 label = onehot return label.copy() def get_details(self, idx): d = dnnlib.EasyDict() d.raw_idx = int(self._raw_idx[idx]) d.xflip = (int(self._xflip[idx]) != 0) d.raw_label = self._get_raw_labels()[d.raw_idx].copy() return d def get_label_std(self): return self._raw_labels_std @property def name(self): return self._name @property def image_shape(self): return list(self._raw_shape[1:]) @property def num_channels(self): assert len(self.image_shape) == 3 # CHW return self.image_shape[0] @property def resolution(self): assert len(self.image_shape) == 3 # CHW assert self.image_shape[1] == self.image_shape[2] return self.image_shape[1] @property def label_shape(self): if self._label_shape is None: raw_labels = self._get_raw_labels() if raw_labels.dtype == np.int64: self._label_shape = [int(np.max(raw_labels)) + 1] else: self._label_shape = raw_labels.shape[1:] return list(self._label_shape) @property def label_dim(self): assert len(self.label_shape) == 1 return self.label_shape[0] @property def has_labels(self): return any(x != 0 for x in self.label_shape) @property def has_onehot_labels(self): return self._get_raw_labels().dtype == np.int64 #---------------------------------------------------------------------------- class ImageFolderDataset(Dataset): def __init__( self, path, # Path to directory or zip. resolution=None, # Ensure specific resolution, None = highest available. reso_gt=128, **super_kwargs, # Additional arguments for the Dataset base class. ): self._path = path self._matte_path = path.replace('unzipped_ffhq_512', 'unzipped_ffhq_matte') # self._matte_path = path.replace('unzipped_ffhq_512', # 'ffhq_512_seg') self._zipfile = None if os.path.isdir(self._path): self._type = 'dir' self._all_fnames = { os.path.relpath(os.path.join(root, fname), start=self._path) for root, _dirs, files in os.walk(self._path) for fname in files } elif self._file_ext(self._path) == '.zip': self._type = 'zip' self._all_fnames = set(self._get_zipfile().namelist()) else: raise IOError('Path must point to a directory or zip') PIL.Image.init() self._image_fnames = sorted( fname for fname in self._all_fnames if self._file_ext(fname) in PIL.Image.EXTENSION) if len(self._image_fnames) == 0: raise IOError('No image files found in the specified path') name = os.path.splitext(os.path.basename(self._path))[0] raw_shape = [len(self._image_fnames)] + list( self._load_raw_image(0).shape) # raw_shape = [len(self._image_fnames)] + list( # self._load_raw_image(0).shape) if resolution is not None and (raw_shape[2] != resolution or raw_shape[3] != resolution): raise IOError('Image files do not match the specified resolution') super().__init__(name=name, raw_shape=raw_shape, reso_gt=reso_gt, **super_kwargs) @staticmethod def _file_ext(fname): return os.path.splitext(fname)[1].lower() def _get_zipfile(self): assert self._type == 'zip' if self._zipfile is None: self._zipfile = zipfile.ZipFile(self._path) return self._zipfile def _open_file(self, fname): if self._type == 'dir': return open(os.path.join(self._path, fname), 'rb') if self._type == 'zip': return self._get_zipfile().open(fname, 'r') return None def _open_matte_file(self, fname): if self._type == 'dir': return open(os.path.join(self._matte_path, fname), 'rb') # if self._type == 'zip': # return self._get_zipfile().open(fname, 'r') # return None def close(self): try: if self._zipfile is not None: self._zipfile.close() finally: self._zipfile = None def __getstate__(self): return dict(super().__getstate__(), _zipfile=None) def _load_raw_image(self, raw_idx): fname = self._image_fnames[raw_idx] with self._open_file(fname) as f: if pyspng is not None and self._file_ext(fname) == '.png': image = pyspng.load(f.read()) else: image = np.array(PIL.Image.open(f)) if image.ndim == 2: image = image[:, :, np.newaxis] # HW => HWC image = image.transpose(2, 0, 1) # HWC => CHW return image def _load_raw_matte(self, raw_idx): # ! from seg version fname = self._image_fnames[raw_idx] with self._open_matte_file(fname) as f: if pyspng is not None and self._file_ext(fname) == '.png': image = pyspng.load(f.read()) else: image = np.array(PIL.Image.open(f)) # if image.max() != 1: image = (image > 0).astype(np.float32) # process segmentation if image.ndim == 2: image = image[:, :, np.newaxis] # HW => HWC image = image.transpose(2, 0, 1) # HWC => CHW return image def _load_raw_matte_orig(self, raw_idx): fname = self._image_fnames[raw_idx] with self._open_matte_file(fname) as f: if pyspng is not None and self._file_ext(fname) == '.png': image = pyspng.load(f.read()) else: image = np.array(PIL.Image.open(f)) st() # process segmentation if image.ndim == 2: image = image[:, :, np.newaxis] # HW => HWC image = image.transpose(2, 0, 1) # HWC => CHW return image def _load_raw_labels(self): fname = 'dataset.json' if fname not in self._all_fnames: return None with self._open_file(fname) as f: # st() labels = json.load(f)['labels'] if labels is None: return None labels = dict(labels) labels_ = [] for fname, _ in labels.items(): # if 'mirror' not in fname: labels_.append(labels[fname]) labels = labels_ # ! # labels = [ # labels[fname.replace('\\', '/')] for fname in self._image_fnames # ] labels = np.array(labels) labels = labels.astype({1: np.int64, 2: np.float32}[labels.ndim]) self._raw_labels = labels return labels #---------------------------------------------------------------------------- # class ImageFolderDatasetUnzipped(ImageFolderDataset): # def __init__(self, path, resolution=None, **super_kwargs): # super().__init__(path, resolution, **super_kwargs) # class ImageFolderDatasetPose(ImageFolderDataset): # def __init__( # self, # path, # Path to directory or zip. # resolution=None, # Ensure specific resolution, None = highest available. # **super_kwargs, # Additional arguments for the Dataset base class. # ): # super().__init__(path, resolution, **super_kwargs) # # only return labels # def __len__(self): # return self._raw_idx.size # # return self._get_raw_labels().shape[0] # def __getitem__(self, idx): # # image = self._load_raw_image(self._raw_idx[idx]) # # assert isinstance(image, np.ndarray) # # assert list(image.shape) == self.image_shape # # assert image.dtype == np.uint8 # # if self._xflip[idx]: # # assert image.ndim == 3 # CHW # # image = image[:, :, ::-1] # return dict(c=self.get_label(idx), ) # return dict here class ImageFolderDatasetLMDB(ImageFolderDataset): def __init__(self, path, resolution=None, reso_gt=128, **super_kwargs): super().__init__(path, resolution, reso_gt, **super_kwargs) def __getitem__(self, idx): # print(self._raw_idx[idx], idx) matte = self._load_raw_matte(self._raw_idx[idx]) assert isinstance(matte, np.ndarray) assert list(matte.shape)[1:] == self.image_shape[1:] if self._xflip[idx]: assert matte.ndim == 1 # CHW matte = matte[:, :, ::-1] # matte_orig = matte.copy().astype(np.float32) / 255 matte_orig = matte.copy().astype(np.float32) # segmentation version assert matte_orig.max() <= 1 # some ffhq images are dirty, so may be all zero matte = np.transpose(matte, # (1, 2, 0)).astype(np.float32) / 255 # [0,1] range (1, 2, 0)).astype(np.float32) # [0,1] range # ! load 512 matte # matte = cv2.resize(matte, (self.reso_gt, self.reso_gt), # interpolation=cv2.INTER_NEAREST) assert matte.min() >= 0 and matte.max( ) <= 1, f'{matte.min(), matte.max()}' if matte.ndim == 3: # H, W matte = matte[..., 0] image = self._load_raw_image(self._raw_idx[idx]) assert isinstance(image, np.ndarray) assert list(image.shape) == self.image_shape assert image.dtype == np.uint8 if self._xflip[idx]: assert image.ndim == 3 # CHW image = image[:, :, ::-1] # blending # blending = True # blending = False # if blending: # image = image * matte_orig + (1 - matte_orig) * cv2.GaussianBlur( # image, (5, 5), cv2.BORDER_DEFAULT) # image = image * matte_orig # image = np.transpose(image, (1, 2, 0)).astype( # np.float32 # ) / 255 # H W C for torchvision process, normalize to [0,1] # image_sr = torch.from_numpy(image)[..., :3].permute( # 2, 0, 1) * 2 - 1 # normalize to [-1,1] # image_to_encoder = self.normalize_for_encoder_input(image) # image_gt = cv2.resize(image, (self.reso_gt, self.reso_gt), # interpolation=cv2.INTER_AREA) # image_gt = torch.from_numpy(image_gt)[..., :3].permute( # 2, 0, 1) * 2 - 1 # normalize to [-1,1] return dict( c=self.get_label(idx), # img_to_encoder=image_to_encoder, # 224 # img_sr=image_sr, # 512 img=image, # [-1,1] range # depth=torch.zeros_like(image_gt)[0, ...] # type: ignore # depth=matte, depth_mask=matte, ) # return dict here class LMDBDataset_MV_Compressed_eg3d(LMDBDataset_MV_Compressed): def __init__(self, lmdb_path, reso, reso_encoder, imgnet_normalize=True, **kwargs): super().__init__(lmdb_path, reso, reso_encoder, imgnet_normalize, **kwargs) self.normalize_for_encoder_input = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), transforms.Resize(size=(self.reso_encoder, self.reso_encoder), antialias=True), # type: ignore ]) self.normalize_for_gt = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), transforms.Resize(size=(self.reso, self.reso), antialias=True), # type: ignore ]) def __getitem__(self, idx): # sample = super(LMDBDataset).__getitem__(idx) # do gzip uncompress online with self.env.begin(write=False) as txn: img_key = f'{idx}-img'.encode('utf-8') image = self.load_image_fn(txn.get(img_key)) depth_key = f'{idx}-depth_mask'.encode('utf-8') # depth = decompress_array(txn.get(depth_key), (512,512), np.float32) depth = decompress_array(txn.get(depth_key), (64,64), np.float32) c_key = f'{idx}-c'.encode('utf-8') c = decompress_array(txn.get(c_key), (25, ), np.float32) # ! post processing, e.g., normalizing depth = cv2.resize(depth, (self.reso, self.reso), interpolation=cv2.INTER_NEAREST) image = np.transpose(image, (1, 2, 0)).astype( np.float32 ) / 255 # H W C for torchvision process, normalize to [0,1] image_sr = torch.from_numpy(image)[..., :3].permute( 2, 0, 1) * 2 - 1 # normalize to [-1,1] image_to_encoder = self.normalize_for_encoder_input(image) image_gt = cv2.resize(image, (self.reso, self.reso), interpolation=cv2.INTER_AREA) image_gt = torch.from_numpy(image_gt)[..., :3].permute( 2, 0, 1) * 2 - 1 # normalize to [-1,1] return { 'img_to_encoder': image_to_encoder, # 224 'img_sr': image_sr, # 512 'img': image_gt, # [-1,1] range 'c': c, 'depth': depth, 'depth_mask': depth, }