/* * Copyright (C) 2023, Inria * GRAPHDECO research group, https://team.inria.fr/graphdeco * All rights reserved. * * This software is free for non-commercial, research and evaluation use * under the terms of the LICENSE.md file. * * For inquiries contact george.drettakis@inria.fr */ #include "backward.h" #include "auxiliary.h" #include #include namespace cg = cooperative_groups; // Backward pass for conversion of spherical harmonics to RGB for // each Gaussian. __device__ void computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3* means, glm::vec3 campos, const float* shs, const bool* clamped, const glm::vec3* dL_dcolor, glm::vec3* dL_dmeans, glm::vec3* dL_dshs) { // Compute intermediate values, as it is done during forward glm::vec3 pos = means[idx]; glm::vec3 dir_orig = pos - campos; glm::vec3 dir = dir_orig / glm::length(dir_orig); glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs; // Use PyTorch rule for clamping: if clamping was applied, // gradient becomes 0. glm::vec3 dL_dRGB = dL_dcolor[idx]; dL_dRGB.x *= clamped[3 * idx + 0] ? 0 : 1; dL_dRGB.y *= clamped[3 * idx + 1] ? 0 : 1; dL_dRGB.z *= clamped[3 * idx + 2] ? 0 : 1; glm::vec3 dRGBdx(0, 0, 0); glm::vec3 dRGBdy(0, 0, 0); glm::vec3 dRGBdz(0, 0, 0); float x = dir.x; float y = dir.y; float z = dir.z; // Target location for this Gaussian to write SH gradients to glm::vec3* dL_dsh = dL_dshs + idx * max_coeffs; // No tricks here, just high school-level calculus. float dRGBdsh0 = SH_C0; dL_dsh[0] = dRGBdsh0 * dL_dRGB; if (deg > 0) { float dRGBdsh1 = -SH_C1 * y; float dRGBdsh2 = SH_C1 * z; float dRGBdsh3 = -SH_C1 * x; dL_dsh[1] = dRGBdsh1 * dL_dRGB; dL_dsh[2] = dRGBdsh2 * dL_dRGB; dL_dsh[3] = dRGBdsh3 * dL_dRGB; dRGBdx = -SH_C1 * sh[3]; dRGBdy = -SH_C1 * sh[1]; dRGBdz = SH_C1 * sh[2]; if (deg > 1) { float xx = x * x, yy = y * y, zz = z * z; float xy = x * y, yz = y * z, xz = x * z; float dRGBdsh4 = SH_C2[0] * xy; float dRGBdsh5 = SH_C2[1] * yz; float dRGBdsh6 = SH_C2[2] * (2.f * zz - xx - yy); float dRGBdsh7 = SH_C2[3] * xz; float dRGBdsh8 = SH_C2[4] * (xx - yy); dL_dsh[4] = dRGBdsh4 * dL_dRGB; dL_dsh[5] = dRGBdsh5 * dL_dRGB; dL_dsh[6] = dRGBdsh6 * dL_dRGB; dL_dsh[7] = dRGBdsh7 * dL_dRGB; dL_dsh[8] = dRGBdsh8 * dL_dRGB; dRGBdx += SH_C2[0] * y * sh[4] + SH_C2[2] * 2.f * -x * sh[6] + SH_C2[3] * z * sh[7] + SH_C2[4] * 2.f * x * sh[8]; dRGBdy += SH_C2[0] * x * sh[4] + SH_C2[1] * z * sh[5] + SH_C2[2] * 2.f * -y * sh[6] + SH_C2[4] * 2.f * -y * sh[8]; dRGBdz += SH_C2[1] * y * sh[5] + SH_C2[2] * 2.f * 2.f * z * sh[6] + SH_C2[3] * x * sh[7]; if (deg > 2) { float dRGBdsh9 = SH_C3[0] * y * (3.f * xx - yy); float dRGBdsh10 = SH_C3[1] * xy * z; float dRGBdsh11 = SH_C3[2] * y * (4.f * zz - xx - yy); float dRGBdsh12 = SH_C3[3] * z * (2.f * zz - 3.f * xx - 3.f * yy); float dRGBdsh13 = SH_C3[4] * x * (4.f * zz - xx - yy); float dRGBdsh14 = SH_C3[5] * z * (xx - yy); float dRGBdsh15 = SH_C3[6] * x * (xx - 3.f * yy); dL_dsh[9] = dRGBdsh9 * dL_dRGB; dL_dsh[10] = dRGBdsh10 * dL_dRGB; dL_dsh[11] = dRGBdsh11 * dL_dRGB; dL_dsh[12] = dRGBdsh12 * dL_dRGB; dL_dsh[13] = dRGBdsh13 * dL_dRGB; dL_dsh[14] = dRGBdsh14 * dL_dRGB; dL_dsh[15] = dRGBdsh15 * dL_dRGB; dRGBdx += ( SH_C3[0] * sh[9] * 3.f * 2.f * xy + SH_C3[1] * sh[10] * yz + SH_C3[2] * sh[11] * -2.f * xy + SH_C3[3] * sh[12] * -3.f * 2.f * xz + SH_C3[4] * sh[13] * (-3.f * xx + 4.f * zz - yy) + SH_C3[5] * sh[14] * 2.f * xz + SH_C3[6] * sh[15] * 3.f * (xx - yy)); dRGBdy += ( SH_C3[0] * sh[9] * 3.f * (xx - yy) + SH_C3[1] * sh[10] * xz + SH_C3[2] * sh[11] * (-3.f * yy + 4.f * zz - xx) + SH_C3[3] * sh[12] * -3.f * 2.f * yz + SH_C3[4] * sh[13] * -2.f * xy + SH_C3[5] * sh[14] * -2.f * yz + SH_C3[6] * sh[15] * -3.f * 2.f * xy); dRGBdz += ( SH_C3[1] * sh[10] * xy + SH_C3[2] * sh[11] * 4.f * 2.f * yz + SH_C3[3] * sh[12] * 3.f * (2.f * zz - xx - yy) + SH_C3[4] * sh[13] * 4.f * 2.f * xz + SH_C3[5] * sh[14] * (xx - yy)); } } } // The view direction is an input to the computation. View direction // is influenced by the Gaussian's mean, so SHs gradients // must propagate back into 3D position. glm::vec3 dL_ddir(glm::dot(dRGBdx, dL_dRGB), glm::dot(dRGBdy, dL_dRGB), glm::dot(dRGBdz, dL_dRGB)); // Account for normalization of direction float3 dL_dmean = dnormvdv(float3{ dir_orig.x, dir_orig.y, dir_orig.z }, float3{ dL_ddir.x, dL_ddir.y, dL_ddir.z }); // Gradients of loss w.r.t. Gaussian means, but only the portion // that is caused because the mean affects the view-dependent color. // Additional mean gradient is accumulated in below methods. dL_dmeans[idx] += glm::vec3(dL_dmean.x, dL_dmean.y, dL_dmean.z); } // Backward version of the rendering procedure. template __global__ void __launch_bounds__(BLOCK_X * BLOCK_Y) renderCUDA( const uint2* __restrict__ ranges, const uint32_t* __restrict__ point_list, int W, int H, float focal_x, float focal_y, const float* __restrict__ bg_color, const float2* __restrict__ points_xy_image, const float4* __restrict__ normal_opacity, const float* __restrict__ transMats, const float* __restrict__ colors, const float* __restrict__ depths, const float* __restrict__ final_Ts, const uint32_t* __restrict__ n_contrib, const float* __restrict__ dL_dpixels, const float* __restrict__ dL_depths, float * __restrict__ dL_dtransMat, float3* __restrict__ dL_dmean2D, float* __restrict__ dL_dnormal3D, float* __restrict__ dL_dopacity, float* __restrict__ dL_dcolors) { // We rasterize again. Compute necessary block info. auto block = cg::this_thread_block(); const uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X; const uint2 pix_min = { block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y }; const uint2 pix_max = { min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y , H) }; const uint2 pix = { pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y }; const uint32_t pix_id = W * pix.y + pix.x; const float2 pixf = {(float)pix.x, (float)pix.y}; const bool inside = pix.x < W&& pix.y < H; const uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x]; const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE); bool done = !inside; int toDo = range.y - range.x; __shared__ int collected_id[BLOCK_SIZE]; __shared__ float2 collected_xy[BLOCK_SIZE]; __shared__ float4 collected_normal_opacity[BLOCK_SIZE]; __shared__ float collected_colors[C * BLOCK_SIZE]; __shared__ float3 collected_Tu[BLOCK_SIZE]; __shared__ float3 collected_Tv[BLOCK_SIZE]; __shared__ float3 collected_Tw[BLOCK_SIZE]; // __shared__ float collected_depths[BLOCK_SIZE]; // In the forward, we stored the final value for T, the // product of all (1 - alpha) factors. const float T_final = inside ? final_Ts[pix_id] : 0; float T = T_final; // We start from the back. The ID of the last contributing // Gaussian is known from each pixel from the forward. uint32_t contributor = toDo; const int last_contributor = inside ? n_contrib[pix_id] : 0; float accum_rec[C] = { 0 }; float dL_dpixel[C]; #if RENDER_AXUTILITY float dL_dreg; float dL_ddepth; float dL_daccum; float dL_dnormal2D[3]; const int median_contributor = inside ? n_contrib[pix_id + H * W] : 0; float dL_dmedian_depth; float dL_dmax_dweight; if (inside) { dL_ddepth = dL_depths[DEPTH_OFFSET * H * W + pix_id]; dL_daccum = dL_depths[ALPHA_OFFSET * H * W + pix_id]; dL_dreg = dL_depths[DISTORTION_OFFSET * H * W + pix_id]; for (int i = 0; i < 3; i++) dL_dnormal2D[i] = dL_depths[(NORMAL_OFFSET + i) * H * W + pix_id]; dL_dmedian_depth = dL_depths[MIDDEPTH_OFFSET * H * W + pix_id]; // dL_dmax_dweight = dL_depths[MEDIAN_WEIGHT_OFFSET * H * W + pix_id]; } // for compute gradient with respect to depth and normal float last_depth = 0; float last_normal[3] = { 0 }; float accum_depth_rec = 0; float accum_alpha_rec = 0; float accum_normal_rec[3] = {0}; // for compute gradient with respect to the distortion map const float final_D = inside ? final_Ts[pix_id + H * W] : 0; const float final_D2 = inside ? final_Ts[pix_id + 2 * H * W] : 0; const float final_A = 1 - T_final; float last_dL_dT = 0; #endif if (inside){ for (int i = 0; i < C; i++) dL_dpixel[i] = dL_dpixels[i * H * W + pix_id]; } float last_alpha = 0; float last_color[C] = { 0 }; // Gradient of pixel coordinate w.r.t. normalized // screen-space viewport corrdinates (-1 to 1) const float ddelx_dx = 0.5 * W; const float ddely_dy = 0.5 * H; // Traverse all Gaussians for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE) { // Load auxiliary data into shared memory, start in the BACK // and load them in revers order. block.sync(); const int progress = i * BLOCK_SIZE + block.thread_rank(); if (range.x + progress < range.y) { const int coll_id = point_list[range.y - progress - 1]; collected_id[block.thread_rank()] = coll_id; collected_xy[block.thread_rank()] = points_xy_image[coll_id]; collected_normal_opacity[block.thread_rank()] = normal_opacity[coll_id]; collected_Tu[block.thread_rank()] = {transMats[9 * coll_id+0], transMats[9 * coll_id+1], transMats[9 * coll_id+2]}; collected_Tv[block.thread_rank()] = {transMats[9 * coll_id+3], transMats[9 * coll_id+4], transMats[9 * coll_id+5]}; collected_Tw[block.thread_rank()] = {transMats[9 * coll_id+6], transMats[9 * coll_id+7], transMats[9 * coll_id+8]}; for (int i = 0; i < C; i++) collected_colors[i * BLOCK_SIZE + block.thread_rank()] = colors[coll_id * C + i]; // collected_depths[block.thread_rank()] = depths[coll_id]; } block.sync(); // Iterate over Gaussians for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++) { // Keep track of current Gaussian ID. Skip, if this one // is behind the last contributor for this pixel. contributor--; if (contributor >= last_contributor) continue; // compute ray-splat intersection as before // Fisrt compute two homogeneous planes, See Eq. (8) const float2 xy = collected_xy[j]; const float3 Tu = collected_Tu[j]; const float3 Tv = collected_Tv[j]; const float3 Tw = collected_Tw[j]; float3 k = pix.x * Tw - Tu; float3 l = pix.y * Tw - Tv; float3 p = cross(k, l); if (p.z == 0.0) continue; float2 s = {p.x / p.z, p.y / p.z}; float rho3d = (s.x * s.x + s.y * s.y); float2 d = {xy.x - pixf.x, xy.y - pixf.y}; float rho2d = FilterInvSquare * (d.x * d.x + d.y * d.y); float rho = min(rho3d, rho2d); // compute depth float c_d = (s.x * Tw.x + s.y * Tw.y) + Tw.z; // Tw * [u,v,1] // if a point is too small, its depth is not reliable? // c_d = (rho3d <= rho2d) ? c_d : Tw.z; if (c_d < near_n) continue; float4 nor_o = collected_normal_opacity[j]; float normal[3] = {nor_o.x, nor_o.y, nor_o.z}; float opa = nor_o.w; // accumulations float power = -0.5f * rho; if (power > 0.0f) continue; const float G = exp(power); const float alpha = min(0.99f, opa * G); if (alpha < 1.0f / 255.0f) continue; T = T / (1.f - alpha); const float dchannel_dcolor = alpha * T; const float w = alpha * T; // Propagate gradients to per-Gaussian colors and keep // gradients w.r.t. alpha (blending factor for a Gaussian/pixel // pair). float dL_dalpha = 0.0f; const int global_id = collected_id[j]; for (int ch = 0; ch < C; ch++) { const float c = collected_colors[ch * BLOCK_SIZE + j]; // Update last color (to be used in the next iteration) accum_rec[ch] = last_alpha * last_color[ch] + (1.f - last_alpha) * accum_rec[ch]; last_color[ch] = c; const float dL_dchannel = dL_dpixel[ch]; dL_dalpha += (c - accum_rec[ch]) * dL_dchannel; // Update the gradients w.r.t. color of the Gaussian. // Atomic, since this pixel is just one of potentially // many that were affected by this Gaussian. atomicAdd(&(dL_dcolors[global_id * C + ch]), dchannel_dcolor * dL_dchannel); } float dL_dz = 0.0f; float dL_dweight = 0; #if RENDER_AXUTILITY const float m_d = far_n / (far_n - near_n) * (1 - near_n / c_d); const float dmd_dd = (far_n * near_n) / ((far_n - near_n) * c_d * c_d); if (contributor == median_contributor-1) { dL_dz += dL_dmedian_depth; // dL_dweight += dL_dmax_dweight; } #if DETACH_WEIGHT // if not detached weight, sometimes // it will bia toward creating extragated 2D Gaussians near front dL_dweight += 0; #else dL_dweight += (final_D2 + m_d * m_d * final_A - 2 * m_d * final_D) * dL_dreg; #endif dL_dalpha += dL_dweight - last_dL_dT; // propagate the current weight W_{i} to next weight W_{i-1} last_dL_dT = dL_dweight * alpha + (1 - alpha) * last_dL_dT; const float dL_dmd = 2.0f * (T * alpha) * (m_d * final_A - final_D) * dL_dreg; dL_dz += dL_dmd * dmd_dd; // Propagate gradients w.r.t ray-splat depths accum_depth_rec = last_alpha * last_depth + (1.f - last_alpha) * accum_depth_rec; last_depth = c_d; dL_dalpha += (c_d - accum_depth_rec) * dL_ddepth; // Propagate gradients w.r.t. color ray-splat alphas accum_alpha_rec = last_alpha * 1.0 + (1.f - last_alpha) * accum_alpha_rec; dL_dalpha += (1 - accum_alpha_rec) * dL_daccum; // Propagate gradients to per-Gaussian normals for (int ch = 0; ch < 3; ch++) { accum_normal_rec[ch] = last_alpha * last_normal[ch] + (1.f - last_alpha) * accum_normal_rec[ch]; last_normal[ch] = normal[ch]; dL_dalpha += (normal[ch] - accum_normal_rec[ch]) * dL_dnormal2D[ch]; atomicAdd((&dL_dnormal3D[global_id * 3 + ch]), alpha * T * dL_dnormal2D[ch]); } #endif dL_dalpha *= T; // Update last alpha (to be used in the next iteration) last_alpha = alpha; // Account for fact that alpha also influences how much of // the background color is added if nothing left to blend float bg_dot_dpixel = 0; for (int i = 0; i < C; i++) bg_dot_dpixel += bg_color[i] * dL_dpixel[i]; dL_dalpha += (-T_final / (1.f - alpha)) * bg_dot_dpixel; // Helpful reusable temporary variables const float dL_dG = nor_o.w * dL_dalpha; #if RENDER_AXUTILITY dL_dz += alpha * T * dL_ddepth; #endif if (rho3d <= rho2d) { // Update gradients w.r.t. covariance of Gaussian 3x3 (T) const float2 dL_ds = { dL_dG * -G * s.x + dL_dz * Tw.x, dL_dG * -G * s.y + dL_dz * Tw.y }; const float3 dz_dTw = {s.x, s.y, 1.0}; const float dsx_pz = dL_ds.x / p.z; const float dsy_pz = dL_ds.y / p.z; const float3 dL_dp = {dsx_pz, dsy_pz, -(dsx_pz * s.x + dsy_pz * s.y)}; const float3 dL_dk = cross(l, dL_dp); const float3 dL_dl = cross(dL_dp, k); const float3 dL_dTu = {-dL_dk.x, -dL_dk.y, -dL_dk.z}; const float3 dL_dTv = {-dL_dl.x, -dL_dl.y, -dL_dl.z}; const float3 dL_dTw = { pixf.x * dL_dk.x + pixf.y * dL_dl.x + dL_dz * dz_dTw.x, pixf.x * dL_dk.y + pixf.y * dL_dl.y + dL_dz * dz_dTw.y, pixf.x * dL_dk.z + pixf.y * dL_dl.z + dL_dz * dz_dTw.z}; // Update gradients w.r.t. 3D covariance (3x3 matrix) atomicAdd(&dL_dtransMat[global_id * 9 + 0], dL_dTu.x); atomicAdd(&dL_dtransMat[global_id * 9 + 1], dL_dTu.y); atomicAdd(&dL_dtransMat[global_id * 9 + 2], dL_dTu.z); atomicAdd(&dL_dtransMat[global_id * 9 + 3], dL_dTv.x); atomicAdd(&dL_dtransMat[global_id * 9 + 4], dL_dTv.y); atomicAdd(&dL_dtransMat[global_id * 9 + 5], dL_dTv.z); atomicAdd(&dL_dtransMat[global_id * 9 + 6], dL_dTw.x); atomicAdd(&dL_dtransMat[global_id * 9 + 7], dL_dTw.y); atomicAdd(&dL_dtransMat[global_id * 9 + 8], dL_dTw.z); } else { // // Update gradients w.r.t. center of Gaussian 2D mean position const float dG_ddelx = -G * FilterInvSquare * d.x; const float dG_ddely = -G * FilterInvSquare * d.y; atomicAdd(&dL_dmean2D[global_id].x, dL_dG * dG_ddelx); // not scaled atomicAdd(&dL_dmean2D[global_id].y, dL_dG * dG_ddely); // not scaled // // Propagate the gradients of depth atomicAdd(&dL_dtransMat[global_id * 9 + 6], s.x * dL_dz); atomicAdd(&dL_dtransMat[global_id * 9 + 7], s.y * dL_dz); atomicAdd(&dL_dtransMat[global_id * 9 + 8], dL_dz); } // Update gradients w.r.t. opacity of the Gaussian atomicAdd(&(dL_dopacity[global_id]), G * dL_dalpha); } } } __device__ void compute_transmat_aabb( int idx, const float* Ts_precomp, const float3* p_origs, const glm::vec2* scales, const glm::vec4* rots, const float* projmatrix, const float* viewmatrix, const int W, const int H, const float3* dL_dnormals, const float3* dL_dmean2Ds, float* dL_dTs, glm::vec3* dL_dmeans, glm::vec2* dL_dscales, glm::vec4* dL_drots) { glm::mat3 T; float3 normal; glm::mat3x4 P; glm::mat3 R; glm::mat3 S; float3 p_orig; glm::vec4 rot; glm::vec2 scale; // Get transformation matrix of the Gaussian if (Ts_precomp != nullptr) { T = glm::mat3( Ts_precomp[idx * 9 + 0], Ts_precomp[idx * 9 + 1], Ts_precomp[idx * 9 + 2], Ts_precomp[idx * 9 + 3], Ts_precomp[idx * 9 + 4], Ts_precomp[idx * 9 + 5], Ts_precomp[idx * 9 + 6], Ts_precomp[idx * 9 + 7], Ts_precomp[idx * 9 + 8] ); normal = {0.0, 0.0, 0.0}; } else { p_orig = p_origs[idx]; rot = rots[idx]; scale = scales[idx]; R = quat_to_rotmat(rot); S = scale_to_mat(scale, 1.0f); glm::mat3 L = R * S; glm::mat3x4 M = glm::mat3x4( glm::vec4(L[0], 0.0), glm::vec4(L[1], 0.0), glm::vec4(p_orig.x, p_orig.y, p_orig.z, 1) ); glm::mat4 world2ndc = glm::mat4( projmatrix[0], projmatrix[4], projmatrix[8], projmatrix[12], projmatrix[1], projmatrix[5], projmatrix[9], projmatrix[13], projmatrix[2], projmatrix[6], projmatrix[10], projmatrix[14], projmatrix[3], projmatrix[7], projmatrix[11], projmatrix[15] ); glm::mat3x4 ndc2pix = glm::mat3x4( glm::vec4(float(W) / 2.0, 0.0, 0.0, float(W-1) / 2.0), glm::vec4(0.0, float(H) / 2.0, 0.0, float(H-1) / 2.0), glm::vec4(0.0, 0.0, 0.0, 1.0) ); P = world2ndc * ndc2pix; T = glm::transpose(M) * P; normal = transformVec4x3({L[2].x, L[2].y, L[2].z}, viewmatrix); } // Update gradients w.r.t. transformation matrix of the Gaussian glm::mat3 dL_dT = glm::mat3( dL_dTs[idx*9+0], dL_dTs[idx*9+1], dL_dTs[idx*9+2], dL_dTs[idx*9+3], dL_dTs[idx*9+4], dL_dTs[idx*9+5], dL_dTs[idx*9+6], dL_dTs[idx*9+7], dL_dTs[idx*9+8] ); float3 dL_dmean2D = dL_dmean2Ds[idx]; if(dL_dmean2D.x != 0 || dL_dmean2D.y != 0) { glm::vec3 t_vec = glm::vec3(9.0f, 9.0f, -1.0f); float d = glm::dot(t_vec, T[2] * T[2]); glm::vec3 f_vec = t_vec * (1.0f / d); glm::vec3 dL_dT0 = dL_dmean2D.x * f_vec * T[2]; glm::vec3 dL_dT1 = dL_dmean2D.y * f_vec * T[2]; glm::vec3 dL_dT3 = dL_dmean2D.x * f_vec * T[0] + dL_dmean2D.y * f_vec * T[1]; glm::vec3 dL_df = dL_dmean2D.x * T[0] * T[2] + dL_dmean2D.y * T[1] * T[2]; float dL_dd = glm::dot(dL_df, f_vec) * (-1.0 / d); glm::vec3 dd_dT3 = t_vec * T[2] * 2.0f; dL_dT3 += dL_dd * dd_dT3; dL_dT[0] += dL_dT0; dL_dT[1] += dL_dT1; dL_dT[2] += dL_dT3; if (Ts_precomp != nullptr) { dL_dTs[idx * 9 + 0] = dL_dT[0].x; dL_dTs[idx * 9 + 1] = dL_dT[0].y; dL_dTs[idx * 9 + 2] = dL_dT[0].z; dL_dTs[idx * 9 + 3] = dL_dT[1].x; dL_dTs[idx * 9 + 4] = dL_dT[1].y; dL_dTs[idx * 9 + 5] = dL_dT[1].z; dL_dTs[idx * 9 + 6] = dL_dT[2].x; dL_dTs[idx * 9 + 7] = dL_dT[2].y; dL_dTs[idx * 9 + 8] = dL_dT[2].z; return; } } if (Ts_precomp != nullptr) return; // Update gradients w.r.t. scaling, rotation, position of the Gaussian glm::mat3x4 dL_dM = P * glm::transpose(dL_dT); float3 dL_dtn = transformVec4x3Transpose(dL_dnormals[idx], viewmatrix); #if DUAL_VISIABLE float3 p_view = transformPoint4x3(p_orig, viewmatrix); float cos = -sumf3(p_view * normal); float multiplier = cos > 0 ? 1: -1; dL_dtn = multiplier * dL_dtn; #endif glm::mat3 dL_dRS = glm::mat3( glm::vec3(dL_dM[0]), glm::vec3(dL_dM[1]), glm::vec3(dL_dtn.x, dL_dtn.y, dL_dtn.z) ); glm::mat3 dL_dR = glm::mat3( dL_dRS[0] * glm::vec3(scale.x), dL_dRS[1] * glm::vec3(scale.y), dL_dRS[2]); dL_drots[idx] = quat_to_rotmat_vjp(rot, dL_dR); dL_dscales[idx] = glm::vec2( (float)glm::dot(dL_dRS[0], R[0]), (float)glm::dot(dL_dRS[1], R[1]) ); dL_dmeans[idx] = glm::vec3(dL_dM[2]); } template __global__ void preprocessCUDA( int P, int D, int M, const float3* means3D, const float* transMats, const int* radii, const float* shs, const bool* clamped, const glm::vec2* scales, const glm::vec4* rotations, const float scale_modifier, const float* viewmatrix, const float* projmatrix, const float focal_x, const float focal_y, const float tan_fovx, const float tan_fovy, const glm::vec3* campos, // grad input float* dL_dtransMats, const float* dL_dnormal3Ds, float* dL_dcolors, float* dL_dshs, float3* dL_dmean2Ds, glm::vec3* dL_dmean3Ds, glm::vec2* dL_dscales, glm::vec4* dL_drots) { auto idx = cg::this_grid().thread_rank(); if (idx >= P || !(radii[idx] > 0)) return; const int W = int(focal_x * tan_fovx * 2); const int H = int(focal_y * tan_fovy * 2); const float * Ts_precomp = (scales) ? nullptr : transMats; compute_transmat_aabb( idx, Ts_precomp, means3D, scales, rotations, projmatrix, viewmatrix, W, H, (float3*)dL_dnormal3Ds, dL_dmean2Ds, (dL_dtransMats), dL_dmean3Ds, dL_dscales, dL_drots ); if (shs) computeColorFromSH(idx, D, M, (glm::vec3*)means3D, *campos, shs, clamped, (glm::vec3*)dL_dcolors, (glm::vec3*)dL_dmean3Ds, (glm::vec3*)dL_dshs); // hack the gradient here for densitification float depth = transMats[idx * 9 + 8]; dL_dmean2Ds[idx].x = dL_dtransMats[idx * 9 + 2] * depth * 0.5 * float(W); // to ndc dL_dmean2Ds[idx].y = dL_dtransMats[idx * 9 + 5] * depth * 0.5 * float(H); // to ndc } void BACKWARD::preprocess( int P, int D, int M, const float3* means3D, const int* radii, const float* shs, const bool* clamped, const glm::vec2* scales, const glm::vec4* rotations, const float scale_modifier, const float* transMats, const float* viewmatrix, const float* projmatrix, const float focal_x, const float focal_y, const float tan_fovx, const float tan_fovy, const glm::vec3* campos, float3* dL_dmean2Ds, const float* dL_dnormal3Ds, float* dL_dtransMats, float* dL_dcolors, float* dL_dshs, glm::vec3* dL_dmean3Ds, glm::vec2* dL_dscales, glm::vec4* dL_drots) { preprocessCUDA<< <(P + 255) / 256, 256 >> > ( P, D, M, (float3*)means3D, transMats, radii, shs, clamped, (glm::vec2*)scales, (glm::vec4*)rotations, scale_modifier, viewmatrix, projmatrix, focal_x, focal_y, tan_fovx, tan_fovy, campos, dL_dtransMats, dL_dnormal3Ds, dL_dcolors, dL_dshs, dL_dmean2Ds, dL_dmean3Ds, dL_dscales, dL_drots ); } void BACKWARD::render( const dim3 grid, const dim3 block, const uint2* ranges, const uint32_t* point_list, int W, int H, float focal_x, float focal_y, const float* bg_color, const float2* means2D, const float4* normal_opacity, const float* colors, const float* transMats, const float* depths, const float* final_Ts, const uint32_t* n_contrib, const float* dL_dpixels, const float* dL_depths, float * dL_dtransMat, float3* dL_dmean2D, float* dL_dnormal3D, float* dL_dopacity, float* dL_dcolors) { renderCUDA << > >( ranges, point_list, W, H, focal_x, focal_y, bg_color, means2D, normal_opacity, transMats, colors, depths, final_Ts, n_contrib, dL_dpixels, dL_depths, dL_dtransMat, dL_dmean2D, dL_dnormal3D, dL_dopacity, dL_dcolors ); }