""" Train a diffusion model on images. """ # import imageio from pathlib import Path import torchvision import kornia import lz4.frame import gzip import random import json import sys import os import lmdb from tqdm import tqdm sys.path.append('.') import torch.distributed as dist import pytorch3d.ops import pickle import traceback from PIL import Image import torch as th if th.cuda.is_available(): from xformers.triton import FusedLayerNorm as LayerNorm import torch.multiprocessing as mp import lzma import webdataset as wds import numpy as np import point_cloud_utils as pcu from torch.utils.data import DataLoader, Dataset import imageio.v3 as iio import argparse import dnnlib from guided_diffusion import dist_util, logger from guided_diffusion.script_util import ( args_to_dict, add_dict_to_argparser, ) # from nsr.train_util import TrainLoop3DRec as TrainLoop from nsr.train_nv_util import TrainLoop3DRecNV, TrainLoop3DRec, TrainLoop3DRecNVPatch from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default from datasets.shapenet import load_data, load_data_for_lmdb, load_eval_data, load_memory_data from nsr.losses.builder import E3DGELossClass from datasets.eg3d_dataset import init_dataset_kwargs from nsr.volumetric_rendering.ray_sampler import RaySampler # from .lmdb_create import encode_and_compress_image def encode_and_compress_image(inp_array, is_image=False, compress=True): # Read the image using imageio # image = imageio.v3.imread(image_path) # Convert the image to bytes # with io.BytesIO() as byte_buffer: # imageio.imsave(byte_buffer, image, format="png") # image_bytes = byte_buffer.getvalue() if is_image: inp_bytes = iio.imwrite("", inp_array, extension=".png") else: inp_bytes = inp_array.tobytes() # Compress the image data using gzip if compress: # compressed_data = gzip.compress(inp_bytes) compressed_data = lz4.frame.compress(inp_bytes) return compressed_data else: return inp_bytes from pdb import set_trace as st import bz2 # th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16 def training_loop(args): # def training_loop(args): # dist_util.setup_dist(args) # th.autograd.set_detect_anomaly(True) # type: ignore th.autograd.set_detect_anomaly(False) # type: ignore # https://blog.csdn.net/qq_41682740/article/details/126304613 SEED = args.seed # dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count()) # logger.log(f"{args.local_rank=} init complete, seed={SEED}") # th.cuda.set_device(args.local_rank) th.cuda.empty_cache() # * deterministic algorithms flags th.cuda.manual_seed_all(SEED) np.random.seed(SEED) random.seed(SEED) ray_sampler = RaySampler() # logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) logger.configure(dir=args.logdir) logger.log("creating encoder and NSR decoder...") # device = dist_util.dev() # device = th.device("cuda", args.local_rank) # shared eg3d opts opts = eg3d_options_default() logger.log("creating data loader...") # let all processes sync up before starting with a new epoch of training dist_util.synchronize() # schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) # opt.max_depth, opt.min_depth = args.rendering_kwargs.ray_end, args.rendering_kwargs.ray_start # loss_class = E3DGELossClass(device, opt).to(device) # writer = SummaryWriter() # TODO, add log dir logger.log("training...") def save_pcd_from_gs(lmdb_path, start_shard, wds_split): """ Convert a PyTorch dataset to LMDB format. Parameters: - dataset: PyTorch dataset - lmdb_path: Path to store the LMDB database """ # ! read dataset path # latent_dir = '/nas/shared/V2V/yslan/logs/nips23/Reconstruction/final/objav/vae/gs/infer-latents/768/8x8/animals/latent_dir/Animals' latent_dir = '/nas/shared/V2V/yslan/logs/nips23/Reconstruction/final/objav/vae/gs/infer-latents/768/8x8/animals-gs-latent-dim=10-fullset/latent_dir' ins_list = [] for class_dir in os.listdir(latent_dir)[:]: for dict_dir in os.listdir(os.path.join(latent_dir, class_dir))[:]: for ins_dir in os.listdir(os.path.join(latent_dir, class_dir, dict_dir)): ins_list.append(os.path.join(class_dir, dict_dir, ins_dir)) K = 4096 # fps K for idx, ins in enumerate(tqdm(ins_list)): # sample_ins = sample.pop('ins') pcd_path = Path(f'{logger.get_dir()}/fps-pcd/{ins}') if (pcd_path / f'fps-{K}.ply').exists(): continue # ! load gaussians gaussians = np.load(os.path.join(latent_dir,ins,'gaussians.npy')) points = gaussians[0,:, 0:3] # load opacity and scale opacity = gaussians[0,:, 3:4] # scale = gaussians[0,:, 4:6] # colors = gaussians[0, :, 10:13] opacity_mask = opacity < 0.005 # official threshold high_opacity_points = points[~opacity_mask[..., 0]] # high_opacity_colors = colors[~opacity_mask[..., 0]] high_opacity_points = th.from_numpy(high_opacity_points).to(dist_util.dev()) pcd_path.mkdir(parents=True, exist_ok=True) try: fps_points = pytorch3d.ops.sample_farthest_points( high_opacity_points.unsqueeze(0), K=K)[0] pcu.save_mesh_v( str(pcd_path / f'fps-{K}.ply'), fps_points[0].detach().cpu().numpy(), ) assert (pcd_path / f'fps-{K}.ply').exists() except Exception as e: continue print(pcd_path, 'save failed: ', e) save_pcd_from_gs(os.path.join(logger.get_dir(), f'wds-%06d.tar'), args.start_shard, args.wds_split) def create_argparser(**kwargs): # defaults.update(model_and_diffusion_defaults()) defaults = dict( seed=0, dataset_size=-1, trainer_name='input_rec', use_amp=False, overfitting=False, num_workers=4, image_size=128, image_size_encoder=224, iterations=150000, anneal_lr=False, lr=5e-5, weight_decay=0.0, lr_anneal_steps=0, batch_size=1, eval_batch_size=12, microbatch=-1, # -1 disables microbatches ema_rate="0.9999", # comma-separated list of EMA values log_interval=50, eval_interval=2500, save_interval=10000, resume_checkpoint="", use_fp16=False, fp16_scale_growth=1e-3, data_dir="", eval_data_dir="", # load_depth=False, # TODO logdir="/mnt/lustre/yslan/logs/nips23/", # test warm up pose sampling training objv_dataset=False, pose_warm_up_iter=-1, start_shard=0, shuffle_across_cls=False, wds_split=1, # out of 4 ) defaults.update(encoder_and_nsr_defaults()) # type: ignore defaults.update(loss_defaults()) parser = argparse.ArgumentParser() add_dict_to_argparser(parser, defaults) return parser if __name__ == "__main__": # os.environ[ # "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. # os.environ["TORCH_CPP_LOG_LEVEL"]="INFO" # os.environ["NCCL_DEBUG"]="INFO" args = create_argparser().parse_args() # args.local_rank = int(os.environ["LOCAL_RANK"]) args.gpus = th.cuda.device_count() opts = args args.rendering_kwargs = rendering_options_defaults(opts) # print(args) with open(os.path.join(args.logdir, 'args.json'), 'w') as f: json.dump(vars(args), f, indent=2) # Launch processes. print('Launching processes...') # try: training_loop(args) # except KeyboardInterrupt as e: # except Exception as e: # # print(e) # traceback.print_exc() # dist_util.cleanup() # clean port and socket when ctrl+c