File size: 27,176 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
"""
Modified from:
https://github.com/NVlabs/LSGM/blob/main/training_obj_joint.py
"""
import copy
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
from typing import Any

import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm

from guided_diffusion import dist_util, logger
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion.nn import update_ema
from guided_diffusion.resample import LossAwareSampler, UniformSampler
# from .train_util import TrainLoop3DRec
from guided_diffusion.train_util import (TrainLoop, calc_average_loss,
                                         find_ema_checkpoint,
                                         find_resume_checkpoint,
                                         get_blob_logdir, log_loss_dict,
                                         log_rec3d_loss_dict,
                                         parse_resume_step_from_filename)
from guided_diffusion.gaussian_diffusion import ModelMeanType

import dnnlib
from dnnlib.util import calculate_adaptive_weight

from ..train_util_diffusion import TrainLoop3DDiffusion
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD


class TrainLoop3DDiffusion_vpsde(TrainLoop3DDiffusion,TrainLoop3DcvD_nvsD_canoD):
    def __init__(self, *, rec_model, denoise_model, diffusion, loss_class, data, eval_data, batch_size, microbatch, lr, ema_rate, log_interval, eval_interval, save_interval, resume_checkpoint, use_fp16=False, fp16_scale_growth=0.001, schedule_sampler=None, weight_decay=0, lr_anneal_steps=0, iterations=10001, ignore_resume_opt=False, freeze_ae=False, denoised_ae=True, triplane_scaling_divider=10, use_amp=False, diffusion_input_size=224, **kwargs):
        super().__init__(rec_model=rec_model, denoise_model=denoise_model, diffusion=diffusion, loss_class=loss_class, data=data, eval_data=eval_data, batch_size=batch_size, microbatch=microbatch, lr=lr, ema_rate=ema_rate, log_interval=log_interval, eval_interval=eval_interval, save_interval=save_interval, resume_checkpoint=resume_checkpoint, use_fp16=use_fp16, fp16_scale_growth=fp16_scale_growth, schedule_sampler=schedule_sampler, weight_decay=weight_decay, lr_anneal_steps=lr_anneal_steps, iterations=iterations, ignore_resume_opt=ignore_resume_opt, freeze_ae=freeze_ae, denoised_ae=denoised_ae, triplane_scaling_divider=triplane_scaling_divider, use_amp=use_amp, diffusion_input_size=diffusion_input_size, **kwargs)

    def run_step(self, batch, step='g_step'):

        if step == 'diffusion_step_rec':
            self.forward_diffusion(batch, behaviour='diffusion_step_rec')
            _ = self.mp_trainer_rec.optimize(self.opt_rec) # TODO, update two groups of parameters
            took_step_ddpm = self.mp_trainer.optimize(self.opt) # TODO, update two groups of parameters

            if took_step_ddpm:
                self._update_ema()  # g_ema # TODO, ema only needs to track ddpm, remove ema tracking in rec

        elif step == 'd_step_rec':
            self.forward_D(batch, behaviour='rec')
            # _ = self.mp_trainer_cvD.optimize(self.opt_cvD)
            _ = self.mp_trainer_canonical_cvD.optimize(self.opt_cano_cvD)

        elif step == 'diffusion_step_nvs':
            self.forward_diffusion(batch, behaviour='diffusion_step_nvs')
            _ = self.mp_trainer_rec.optimize(self.opt_rec) # TODO, update two groups of parameters
            took_step_ddpm = self.mp_trainer.optimize(self.opt) # TODO, update two groups of parameters

            if took_step_ddpm:
                self._update_ema()  # g_ema

        elif step == 'd_step_nvs':
            self.forward_D(batch, behaviour='nvs')
            _ = self.mp_trainer_cvD.optimize(self.opt_cvD)

        self._anneal_lr()
        self.log_step()

    def run_loop(self):
        while (not self.lr_anneal_steps
               or self.step + self.resume_step < self.lr_anneal_steps):

            # let all processes sync up before starting with a new epoch of training
            dist_util.synchronize()

            # batch, cond = next(self.data)
            # if batch is None:
            # batch = next(self.data)
            # self.run_step(batch, 'g_step_rec')

            batch = next(self.data)
            self.run_step(batch, step='diffusion_step_rec')

            batch = next(self.data)
            self.run_step(batch, 'd_step_rec')

            # batch = next(self.data)
            # self.run_step(batch, 'g_step_nvs')

            batch = next(self.data)
            self.run_step(batch, step='diffusion_step_nvs')

            batch = next(self.data)
            self.run_step(batch, 'd_step_nvs')

            if self.step % self.log_interval == 0 and dist_util.get_rank(
            ) == 0:
                out = logger.dumpkvs()
                # * log to tensorboard
                for k, v in out.items():
                    self.writer.add_scalar(f'Loss/{k}', v,
                                           self.step + self.resume_step)

            # if self.step % self.eval_interval == 0 and self.step != 0:
            if self.step % self.eval_interval == 0:
                if dist_util.get_rank() == 0:
                    self.eval_loop()
                    # self.eval_novelview_loop()
                    # let all processes sync up before starting with a new epoch of training
                th.cuda.empty_cache()
                dist_util.synchronize()

            if self.step % self.save_interval == 0:
                self.save(self.mp_trainer, self.mp_trainer.model_name)
                self.save(self.mp_trainer_rec, self.mp_trainer_rec.model_name)
                self.save(self.mp_trainer_cvD, 'cvD')
                self.save(self.mp_trainer_canonical_cvD, 'cano_cvD')

                dist_util.synchronize()
                # Run for a finite amount of time in integration tests.
                if os.environ.get("DIFFUSION_TRAINING_TEST",
                                  "") and self.step > 0:
                    return

            self.step += 1

            if self.step > self.iterations:
                print('reached maximum iterations, exiting')

                # Save the last checkpoint if it wasn't already saved.
                if (self.step - 1) % self.save_interval != 0:

                    self.save(self.mp_trainer, self.mp_trainer.model_name)
                    self.save(self.mp_trainer_rec, self.mp_trainer_rec.model_name)
                    self.save(self.mp_trainer_cvD, 'cvD')
                    self.save(self.mp_trainer_canonical_cvD, 'cano_cvD')

                exit()

        # Save the last checkpoint if it wasn't already saved.
        if (self.step - 1) % self.save_interval != 0:
            self.save()
            self.save(self.mp_trainer_canonical_cvD, 'cvD')

    def forward_diffusion(self, batch, behaviour='rec', *args, **kwargs):
        """
        add sds grad to all ae predicted x_0 
        """

        self.ddp_cano_cvD.requires_grad_(False)
        self.ddp_nvs_cvD.requires_grad_(False)

        self.ddp_model.requires_grad_(True)
        self.ddp_rec_model.requires_grad_(True)

        # if behaviour != 'diff' and 'rec' in behaviour:
        # if behaviour != 'diff' and 'rec' in behaviour: # pure diffusion step
        #     self.ddp_rec_model.requires_grad_(True)
        for param in self.ddp_rec_model.module.decoder.triplane_decoder.parameters( # type: ignore
        ):  # type: ignore
            param.requires_grad_(False) # ! disable triplane_decoder grad in each iteration indepenently; 
        # else:

        self.mp_trainer_rec.zero_grad()
        self.mp_trainer.zero_grad()

        # ! no 'sds' step now, both add sds grad back to ViT

        # assert behaviour != 'sds'
        # if behaviour == 'sds':
        # else:
        #     self.ddp_ddpm_model.requires_grad_(True)

        batch_size = batch['img'].shape[0]

        for i in range(0, batch_size, self.microbatch):

            micro = {
                k: v[i:i + self.microbatch].to(dist_util.dev())
                for k, v in batch.items()
            }

            last_batch = (i + self.microbatch) >= batch_size

            vae_nelbo_loss = th.tensor(0.0).to(dist_util.dev())
            vision_aided_loss = th.tensor(0.0).to(dist_util.dev())
            denoise_loss = th.tensor(0.0).to(dist_util.dev())
            d_weight = th.tensor(0.0).to(dist_util.dev())

            # =================================== ae part ===================================
            with th.cuda.amp.autocast(dtype=th.float16,
                                      enabled=self.mp_trainer.use_amp
                                      and not self.freeze_ae):

                # apply vae
                vae_out = self.ddp_rec_model(
                    img=micro['img_to_encoder'],
                    c=micro['c'],
                    behaviour='enc_dec_wo_triplane')  # pred: (B, 3, 64, 64)
                

                if behaviour == 'diffusion_step_rec':
                    target = micro
                    pred = self.ddp_rec_model(latent=vae_out,
                                              c=micro['c'],
                                              behaviour='triplane_dec')

                    # vae reconstruction loss
                    if last_batch or not self.use_ddp:
                        vae_nelbo_loss, loss_dict = self.loss_class(pred,
                                                             target,
                                                             test_mode=False)
                    else:
                        with self.ddp_model.no_sync():  # type: ignore
                            vae_nelbo_loss, loss_dict = self.loss_class(
                                pred, target, test_mode=False)

                    last_layer = self.ddp_rec_model.module.decoder.triplane_decoder.decoder.net[  # type: ignore
                        -1].weight  # type: ignore

                    if 'image_sr' in pred:
                        vision_aided_loss = self.ddp_cano_cvD(
                            0.5 * pred['image_sr'] +
                            0.5 * th.nn.functional.interpolate(
                                pred['image_raw'],
                                size=pred['image_sr'].shape[2:],
                                mode='bilinear'),
                            for_G=True).mean()  # [B, 1] shape
                    else:
                        vision_aided_loss = self.ddp_cano_cvD(
                            pred['image_raw'], for_G=True
                        ).mean(
                        )   # [B, 1] shape

                    d_weight = calculate_adaptive_weight(
                        vae_nelbo_loss,
                        vision_aided_loss,
                        last_layer,
                        # disc_weight_max=1) * 1
                        disc_weight_max=1) * self.loss_class.opt.rec_cvD_lambda
                    # d_weight = self.loss_class.opt.rec_cvD_lambda # since decoder is fixed here. set to 0.001
                    
                    vision_aided_loss *= d_weight

                    # d_weight = self.loss_class.opt.rec_cvD_lambda
                    loss_dict.update({
                        'vision_aided_loss/G_rec':
                        vision_aided_loss,
                        'd_weight_G_rec':
                        d_weight,
                    })

                    log_rec3d_loss_dict(loss_dict)

                elif behaviour == 'diffusion_step_nvs':

                    novel_view_c = th.cat([micro['c'][1:], micro['c'][:1]])

                    pred = self.ddp_rec_model(latent=vae_out,
                                              c=novel_view_c,
                                              behaviour='triplane_dec')

                    if 'image_sr' in pred:
                        vision_aided_loss = self.ddp_nvs_cvD(
                            # pred_for_rec['image_sr'],
                            0.5 * pred['image_sr'] +
                            0.5 * th.nn.functional.interpolate(
                                pred['image_raw'],
                                size=pred['image_sr'].shape[2:],
                                mode='bilinear'),
                            for_G=True).mean()  # [B, 1] shape
                    else:
                        vision_aided_loss = self.ddp_nvs_cvD(
                            pred['image_raw'], for_G=True
                        ).mean(
                        )  # [B, 1] shape

                    d_weight = self.loss_class.opt.nvs_cvD_lambda
                    vision_aided_loss *= d_weight

                    log_rec3d_loss_dict({
                        'vision_aided_loss/G_nvs':
                        vision_aided_loss,
                    })

                    # ae_loss = th.tensor(0.0).to(dist_util.dev())

                # elif behaviour == 'diff':
                #     self.ddp_rec_model.requires_grad_(False)
                #     # assert self.ddp_rec_model.module.requires_grad == False, 'freeze ddpm_rec for pure diff step'
                else:
                    raise NotImplementedError(behaviour)
                #     assert behaviour == 'sds'

                # pred = None

                # if behaviour != 'sds': # also train diffusion
                # assert pred is not None

                # TODO, train diff and sds together, available?
                eps = vae_out[self.latent_name] 

                # if behaviour != 'sds':
                # micro_to_denoise.detach_()
                eps.requires_grad_(True) # single stage diffusion

                t, weights = self.schedule_sampler.sample(
                    eps.shape[0], dist_util.dev())
                noise = th.randn(size=vae_out.size(), device='cuda')  # note that this noise value is currently shared!

                model_kwargs = {}

                # ? 
                # or directly use SSD NeRF version?
                # get diffusion quantities for p (sgm prior) sampling scheme and reweighting for q (vae)

                # ! handle the sampling 

                # get diffusion quantities for p (sgm prior) sampling scheme and reweighting for q (vae)
                t_p, var_t_p, m_t_p, obj_weight_t_p, obj_weight_t_q, g2_t_p = \
                    diffusion.iw_quantities(args.batch_size, args.time_eps, args.iw_sample_p, args.iw_subvp_like_vp_sde)
                eps_t_p = diffusion.sample_q(vae_out, noise, var_t_p, m_t_p)

                # in case we want to train q (vae) with another batch using a different sampling scheme for times t
                if args.iw_sample_q in ['ll_uniform', 'll_iw']:
                    t_q, var_t_q, m_t_q, obj_weight_t_q, _, g2_t_q = \
                        diffusion.iw_quantities(args.batch_size, args.time_eps, args.iw_sample_q, args.iw_subvp_like_vp_sde)
                    eps_t_q = diffusion.sample_q(vae_out, noise, var_t_q, m_t_q)

                    eps_t_p = eps_t_p.detach().requires_grad_(True)
                    eps_t = th.cat([eps_t_p, eps_t_q], dim=0)
                    var_t = th.cat([var_t_p, var_t_q], dim=0)
                    t = th.cat([t_p, t_q], dim=0)
                    noise = th.cat([noise, noise], dim=0)
                else:
                    eps_t, m_t, var_t, t, g2_t = eps_t_p, m_t_p, var_t_p, t_p, g2_t_p
                
                # run the diffusion

                # mixing normal trick
                # TODO, create a new partial training_losses function 
                mixing_component = diffusion.mixing_component(eps_t, var_t, t, enabled=dae.mixed_prediction) # TODO, which should I use?
                params = utils.get_mixed_prediction(dae.mixed_prediction, pred_params, dae.mixing_logit, mixing_component)

                # nelbo loss with kl balancing




                # ! remainign parts of cross entropy in likelihook training

                cross_entropy_per_var += diffusion.cross_entropy_const(args.time_eps)
                cross_entropy = th.sum(cross_entropy_per_var, dim=[1, 2, 3])
                cross_entropy += remaining_neg_log_p_total  # for remaining scales if there is any
                all_neg_log_p = vae.decompose_eps(cross_entropy_per_var)
                all_neg_log_p.extend(remaining_neg_log_p_per_ver)  # add the remaining neg_log_p
                kl_all_list, kl_vals_per_group, kl_diag_list = utils.kl_per_group_vada(all_log_q, all_neg_log_p)


                kl_coeff = 1.0

                # ! calculate p/q loss; 
                # ? no spectral regularizer here
                # ? try adding grid_clip and sn later on.
                q_loss = th.mean(nelbo_loss) 
                p_loss = th.mean(p_objective) 

                # backpropagate q_loss for vae and update vae params, if trained
                if args.train_vae:
                    grad_scalar.scale(q_loss).backward(retain_graph=utils.different_p_q_objectives(args.iw_sample_p, args.iw_sample_q))
                    utils.average_gradients(vae.parameters(), args.distributed)
                    if args.grad_clip_max_norm > 0.:  # apply gradient clipping
                        grad_scalar.unscale_(vae_optimizer)
                        th.nn.utils.clip_grad_norm_(vae.parameters(), max_norm=args.grad_clip_max_norm)
                    grad_scalar.step(vae_optimizer)

                # if we use different p and q objectives or are not training the vae, discard gradients and backpropagate p_loss
                if utils.different_p_q_objectives(args.iw_sample_p, args.iw_sample_q) or not args.train_vae:
                    if args.train_vae:
                        # discard current gradients computed by weighted loss for VAE
                        dae_optimizer.zero_grad()

                    # compute gradients with unweighted loss
                    grad_scalar.scale(p_loss).backward()

                # update dae parameters
                utils.average_gradients(dae.parameters(), args.distributed)
                if args.grad_clip_max_norm > 0.:         # apply gradient clipping
                    grad_scalar.unscale_(dae_optimizer)
                    th.nn.utils.clip_grad_norm_(dae.parameters(), max_norm=args.grad_clip_max_norm)
                grad_scalar.step(dae_optimizer)


                # unpack separate objectives, in case we want to train q (vae) using a different sampling scheme for times t
                if args.iw_sample_q in ['ll_uniform', 'll_iw']:
                    l2_term_p, l2_term_q = th.chunk(l2_term, chunks=2, dim=0)
                    p_objective = th.sum(obj_weight_t_p * l2_term_p, dim=[1, 2, 3])
                    # cross_entropy_per_var = obj_weight_t_q * l2_term_q
                else:
                    p_objective = th.sum(obj_weight_t_p * l2_term, dim=[1, 2, 3])
                    # cross_entropy_per_var = obj_weight_t_q * l2_term

                # print(micro_to_denoise.min(), micro_to_denoise.max())
                compute_losses = functools.partial(
                    self.diffusion.training_losses,
                    self.ddp_model,
                    eps,  # x_start
                    t,
                    model_kwargs=model_kwargs,
                    return_detail=True)

                # ! DDPM step
                if last_batch or not self.use_ddp:
                    losses = compute_losses()
                    # denoised_out = denoised_fn()
                else:
                    with self.ddp_model.no_sync():  # type: ignore
                        losses = compute_losses()

                if isinstance(self.schedule_sampler, LossAwareSampler):
                    self.schedule_sampler.update_with_local_losses(
                        t, losses["loss"].detach())

                denoise_loss = (losses["loss"] * weights).mean()

                x_t = losses.pop('x_t')
                model_output = losses.pop('model_output')
                diffusion_target = losses.pop('diffusion_target')
                alpha_bar = losses.pop('alpha_bar')

                log_loss_dict(self.diffusion, t,
                              {k: v * weights
                               for k, v in losses.items()})

                # if behaviour == 'sds':
                # ! calculate sds grad, and add to the grad of

                # if 'rec' in behaviour and self.loss_class.opt.sds_lamdba > 0:  # only enable sds along with rec step
                #     w = (
                #         1 - alpha_bar**2
                #     ) / self.triplane_scaling_divider * self.loss_class.opt.sds_lamdba  # https://github.com/ashawkey/stable-dreamfusion/issues/106
                #     sds_grad = denoise_loss.clone().detach(
                #     ) * w  # * https://pytorch.org/docs/stable/generated/th.Tensor.detach.html. detach() returned Tensor share the same storage with previous one. add clone() here.

                #     # ae_loss = AddGradient.apply(latent[self.latent_name], sds_grad) # add sds_grad during backward

                #     def sds_hook(grad_to_add):

                #         def modify_grad(grad):
                #             return grad + grad_to_add  # add the sds grad to the original grad for BP

                #         return modify_grad

                #     eps[self.latent_name].register_hook(
                #         sds_hook(sds_grad))  # merge sds grad with rec/nvs ae step

                loss = vae_nelbo_loss + denoise_loss + vision_aided_loss  # caluclate loss within AMP

            # ! cvD loss

            # exit AMP before backward
            self.mp_trainer_rec.backward(loss)
            self.mp_trainer.backward(loss)

            # TODO, merge visualization with original AE
            # =================================== denoised AE log part ===================================

            if dist_util.get_rank() == 0 and self.step % 500 == 0 and behaviour != 'diff':
                with th.no_grad():
                    # gt_vis = th.cat([batch['img'], batch['depth']], dim=-1)

                    # st()

                    gt_depth = micro['depth']
                    if gt_depth.ndim == 3:
                        gt_depth = gt_depth.unsqueeze(1)
                    gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
                                                              gt_depth.min())
                    # if True:
                    pred_depth = pred['image_depth']
                    pred_depth = (pred_depth - pred_depth.min()) / (
                        pred_depth.max() - pred_depth.min())
                    pred_img = pred['image_raw']
                    gt_img = micro['img']

                    # if 'image_sr' in pred:  # TODO
                    #     pred_img = th.cat(
                    #         [self.pool_512(pred_img), pred['image_sr']],
                    #         dim=-1)
                    #     gt_img = th.cat(
                    #         [self.pool_512(micro['img']), micro['img_sr']],
                    #         dim=-1)
                    #     pred_depth = self.pool_512(pred_depth)
                    #     gt_depth = self.pool_512(gt_depth)

                    gt_vis = th.cat(
                        [
                            gt_img, micro['img'], micro['img'],
                            gt_depth.repeat_interleave(3, dim=1)
                        ],
                        dim=-1)[0:1]  # TODO, fail to load depth. range [0, 1]

                    noised_ae_pred = self.ddp_rec_model(
                        img=None,
                        c=micro['c'][0:1],
                        latent=x_t[0:1] * self.
                        triplane_scaling_divider,  # TODO, how to define the scale automatically
                        behaviour=self.render_latent_behaviour)

                    # if denoised_out is None:
                    # if not self.denoised_ae:
                    # denoised_out = denoised_fn()

                    if self.diffusion.model_mean_type == ModelMeanType.START_X:
                        pred_xstart = model_output
                    else:  # * used here
                        pred_xstart = self.diffusion._predict_xstart_from_eps(
                            x_t=x_t, t=t, eps=model_output)

                    denoised_ae_pred = self.ddp_rec_model(
                        img=None,
                        c=micro['c'][0:1],
                        latent=pred_xstart[0:1] * self.
                        triplane_scaling_divider,  # TODO, how to define the scale automatically?
                        behaviour=self.render_latent_behaviour)

                    # denoised_out = denoised_ae_pred

                    # if not self.denoised_ae:
                    #     denoised_ae_pred = self.ddp_rec_model(
                    #         img=None,
                    #         c=micro['c'][0:1],
                    #         latent=denoised_out['pred_xstart'][0:1] * self.
                    #         triplane_scaling_divider,  # TODO, how to define the scale automatically
                    #         behaviour=self.render_latent_behaviour)
                    # else:
                    #     assert denoised_ae_pred is not None
                    #     denoised_ae_pred['image_raw'] = denoised_ae_pred[
                    #         'image_raw'][0:1]

                    # print(pred_img.shape)
                    # print('denoised_ae:', self.denoised_ae)

                    pred_vis = th.cat([
                        pred_img[0:1], noised_ae_pred['image_raw'][0:1],
                        denoised_ae_pred['image_raw'][0:1],
                        pred_depth[0:1].repeat_interleave(3, dim=1)
                    ],
                                      dim=-1)  # B, 3, H, W
                    # s

                    vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
                        1, 2, 0).cpu()  # ! pred in range[-1, 1]

                    # vis = th.cat([
                    #     self.pool_128(micro['img']), x_t[:, :3, ...],
                    #     denoised_out['pred_xstart'][:, :3, ...]
                    # ],
                    #              dim=-1)[0].permute(
                    #                  1, 2, 0).cpu()  # ! pred in range[-1, 1]

                    # vis_grid = torchvision.utils.make_grid(vis) # HWC
                    vis = vis.numpy() * 127.5 + 127.5
                    vis = vis.clip(0, 255).astype(np.uint8)
                    Image.fromarray(vis).save(
                        f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t[0].item()}_{behaviour}.jpg'
                    )
                    print(
                        'log denoised vis to: ',
                        f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t[0].item()}_{behaviour}.jpg'
                    )

                    th.cuda.empty_cache()