File size: 31,666 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d2875
11e6f7b
 
 
 
52d2875
 
 
 
 
11e6f7b
 
 
 
 
 
 
 
 
 
52d2875
11e6f7b
52d2875
 
 
 
 
 
 
 
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d2875
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d2875
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
52d2875
 
 
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d2875
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
"""
https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py#L30
"""
import copy
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
from typing import Any
from click import prompt
import einops
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm

from guided_diffusion import dist_util, logger
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion.nn import update_ema
from guided_diffusion.resample import LossAwareSampler, UniformSampler
# from .train_util import TrainLoop3DRec
from guided_diffusion.train_util import (TrainLoop, calc_average_loss,
                                         find_ema_checkpoint,
                                         find_resume_checkpoint,
                                         get_blob_logdir, log_loss_dict,
                                         log_rec3d_loss_dict,
                                         parse_resume_step_from_filename)
from guided_diffusion.gaussian_diffusion import ModelMeanType

from ldm.modules.encoders.modules import FrozenClipImageEmbedder, TextEmbedder, FrozenCLIPTextEmbedder, FrozenOpenCLIPImagePredictionEmbedder, FrozenOpenCLIPImageEmbedder

import dnnlib
from dnnlib.util import requires_grad
from dnnlib.util import calculate_adaptive_weight

from ..train_util_diffusion import TrainLoop3DDiffusion
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD

from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction, different_p_q_objectives, kl_per_group_vada, kl_balancer
# from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD  # joint diffusion and rec class
# from .controlLDM import TrainLoop3DDiffusionLSGM_Control  # joint diffusion and rec class
from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD  # joint diffusion and rec class

# ! add new schedulers from https://github.com/Stability-AI/generative-models

from .crossattn_cldm import TrainLoop3DDiffusionLSGM_crossattn

# import SD stuffs
from typing import Any, Dict, List, Optional, Tuple, Union
from contextlib import contextmanager
from omegaconf import ListConfig, OmegaConf
from sgm.modules import UNCONDITIONAL_CONFIG

from sgm.util import (default, disabled_train, get_obj_from_str,
                      instantiate_from_config, log_txt_as_img)

from transport import create_transport, Sampler

# from sgm.sampling_utils.demo.streamlit_helpers import init_sampling


class FlowMatchingEngine(TrainLoop3DDiffusionLSGM_crossattn):

    def __init__(
        self,
        *,
        rec_model,
        denoise_model,
        diffusion,
        sde_diffusion,
        control_model,
        control_key,
        only_mid_control,
        loss_class,
        data,
        eval_data,
        batch_size,
        microbatch,
        lr,
        ema_rate,
        log_interval,
        eval_interval,
        save_interval,
        resume_checkpoint,
        resume_cldm_checkpoint=None,
        use_fp16=False,
        fp16_scale_growth=0.001,
        schedule_sampler=None,
        weight_decay=0,
        lr_anneal_steps=0,
        iterations=10001,
        ignore_resume_opt=False,
        freeze_ae=False,
        denoised_ae=True,
        triplane_scaling_divider=10,
        use_amp=False,
        diffusion_input_size=224,
        normalize_clip_encoding=False,
        scale_clip_encoding=1,
        cfg_dropout_prob=0,
        cond_key='img_sr',
        use_eos_feature=False,
        compile=False,
        snr_type='lognorm',
        # denoiser_config,
        # conditioner_config: Union[None, Dict, ListConfig,
        #                           OmegaConf] = None,
        # sampler_config: Union[None, Dict, ListConfig, OmegaConf] = None,
        # loss_fn_config: Union[None, Dict, ListConfig, OmegaConf] = None,
        **kwargs):
        super().__init__(rec_model=rec_model,
                         denoise_model=denoise_model,
                         diffusion=diffusion,
                         sde_diffusion=sde_diffusion,
                         control_model=control_model,
                         control_key=control_key,
                         only_mid_control=only_mid_control,
                         loss_class=loss_class,
                         data=data,
                         eval_data=eval_data,
                         batch_size=batch_size,
                         microbatch=microbatch,
                         lr=lr,
                         ema_rate=ema_rate,
                         log_interval=log_interval,
                         eval_interval=eval_interval,
                         save_interval=save_interval,
                         resume_checkpoint=resume_checkpoint,
                         resume_cldm_checkpoint=resume_cldm_checkpoint,
                         use_fp16=use_fp16,
                         fp16_scale_growth=fp16_scale_growth,
                         schedule_sampler=schedule_sampler,
                         weight_decay=weight_decay,
                         lr_anneal_steps=lr_anneal_steps,
                         iterations=iterations,
                         ignore_resume_opt=ignore_resume_opt,
                         freeze_ae=freeze_ae,
                         denoised_ae=denoised_ae,
                         triplane_scaling_divider=triplane_scaling_divider,
                         use_amp=use_amp,
                         diffusion_input_size=diffusion_input_size,
                         normalize_clip_encoding=normalize_clip_encoding,
                         scale_clip_encoding=scale_clip_encoding,
                         cfg_dropout_prob=cfg_dropout_prob,
                         cond_key=cond_key,
                         use_eos_feature=use_eos_feature,
                         compile=compile,
                         **kwargs)

        #  ! sgm diffusion pipeline
        # ! reuse the conditioner
        if self.cond_key == 'caption':
            ldm_configs = OmegaConf.load(
                'sgm/configs/t23d-clipl-compat-fm.yaml')['ldm_configs']
        else:
            assert 'lognorm' in snr_type
            if snr_type == 'lognorm': # by default
                ldm_configs = OmegaConf.load(
                    'sgm/configs/img23d-clipl-compat-fm-lognorm.yaml')['ldm_configs']
            # elif snr_type == 'lognorm-mv':
            #     ldm_configs = OmegaConf.load(
            #         'sgm/configs/mv23d-clipl-compat-fm-lognorm-noclip.yaml')['ldm_configs']
            elif snr_type == 'lognorm-mv-plucker':
                ldm_configs = OmegaConf.load(
                    # 'sgm/configs/mv23d-plucker-clipl-compat-fm-lognorm.yaml')['ldm_configs']
                    'sgm/configs/mv23d-plucker-clipl-compat-fm-lognorm-noclip.yaml')['ldm_configs']
            else:
                ldm_configs = OmegaConf.load(
                    'sgm/configs/img23d-clipl-compat-fm.yaml')['ldm_configs']

        self.loss_fn = (
            instantiate_from_config(ldm_configs.loss_fn_config)
            # if loss_fn_config is not None
            # else None
        )

        # self.denoiser = instantiate_from_config(
        #     ldm_configs.denoiser_config).to(dist_util.dev())

        self.transport_sampler = Sampler(self.loss_fn.transport)

        self.conditioner = instantiate_from_config(
            default(ldm_configs.conditioner_config,
                    UNCONDITIONAL_CONFIG)).to(dist_util.dev())

        # ! setup optimizer (with cond embedder params here)
        self._setup_opt2()
        self._load_model2()

    def _setup_opt(self):
        pass # see below

    def _setup_opt2(self):
        # ! add trainable conditioner parameters
        # https://github.com/Stability-AI/generative-models/blob/fbdc58cab9f4ee2be7a5e1f2e2787ecd9311942f/sgm/models/diffusion.py#L219

        # params = list(self.ddpm_model.parameters())

        self.opt = AdamW([{
            'name': 'ddpm',
            'params': self.ddpm_model.parameters(),
        },
        ],
                         lr=self.lr,
                         weight_decay=self.weight_decay)
        
        
        embedder_params = []
        for embedder in self.conditioner.embedders:
            if embedder.is_trainable:
                embedder_params = embedder_params + list(embedder.parameters())


        if len(embedder_params) != 0:
            self.opt.add_param_group(
                {
                    'name': 'embedder',
                    'params': embedder_params,
                    'lr': self.lr*0.1, # smaller lr to finetune dino/clip
                }
            )

        # if self.train_vae:
        #     for rec_param_group in self._init_optim_groups(self.rec_model):
        #         self.opt.add_param_group(rec_param_group)

        print(self.opt)

    def save(self, mp_trainer=None, model_name='ddpm'):
        # save embedder params also
        super().save(mp_trainer, model_name)

        # save embedder ckpt
        if dist_util.get_rank() == 0:
            for embedder in self.conditioner.embedders:
                if embedder.is_trainable:
                    # embedder_params = embedder_params + list(embedder.parameters())
                    model_name = embedder.__class__.__name__
                    filename = f"embedder_{model_name}{(self.step+self.resume_step):07d}.pt"
                    with bf.BlobFile(bf.join(get_blob_logdir(), filename),
                                        "wb") as f:
                        th.save(embedder.state_dict(), f)

        dist_util.synchronize()

    def _load_model2(self):

        # ! load embedder
        for embedder in self.conditioner.embedders:
            if embedder.is_trainable:
                # embedder_params = embedder_params + list(embedder.parameters())
                model_name = embedder.__class__.__name__
                filename = f"embedder_{model_name}{(self.step+self.resume_step):07d}.pt"
                # embedder_FrozenDinov2ImageEmbedderMV2115000.pt

                # with bf.BlobFile(bf.join(get_blob_logdir(), filename),
                #                     "wb") as f:
                #     th.save(embedder.state_dict(), f)

                split = self.resume_checkpoint.split("model")
                resume_checkpoint = str(
                    Path(split[0]) / filename)
                if os.path.exists(resume_checkpoint):
                    if dist.get_rank() == 0:
                        logger.log(
                            f"loading cond embedder from checkpoint: {resume_checkpoint}...")
                        # if model is None:
                        #     model = self.model
                        embedder.load_state_dict(
                            dist_util.load_state_dict(
                                resume_checkpoint,
                                map_location=dist_util.dev(),
                            ))
                else:
                    logger.log(f'{resume_checkpoint} not found.')

                if dist_util.get_world_size() > 1:
                    dist_util.sync_params(embedder.parameters())


    def instantiate_cond_stage(self, normalize_clip_encoding,
                               scale_clip_encoding, cfg_dropout_prob,
                               use_eos_feature=False):
        pass # placeholder function. initialized in the self.__init__() using SD api



    # ! already merged
    def prepare_ddpm(self, eps, mode='p'):
        raise NotImplementedError('already implemented in self.denoiser')

    # merged from noD.py

    # use sota denoiser, loss_fn etc.
    def ldm_train_step(self, batch, behaviour='cano', *args, **kwargs):
        """
        add sds grad to all ae predicted x_0 
        """

        # ! enable the gradient of both models
        requires_grad(self.ddpm_model, True)

        self.mp_trainer.zero_grad()  # !!!!

        if 'img' in batch:
            batch_size = batch['img'].shape[0]
        else:
            batch_size = len(batch['caption'])

        for i in range(0, batch_size, self.microbatch):

            micro = {
                k:
                v[i:i + self.microbatch].to(dist_util.dev()) if isinstance(
                    v, th.Tensor) else v
                for k, v in batch.items()
            }

            # move condition to self.dtype
            # =================================== ae part ===================================
            # with th.cuda.amp.autocast(dtype=th.bfloat16,
            with th.cuda.amp.autocast(dtype=self.dtype,
                                      enabled=self.mp_trainer.use_amp):

                loss = th.tensor(0.).to(dist_util.dev())

                assert 'latent' in micro
                vae_out = {self.latent_name: micro['latent']}
                # else:
                #     vae_out = self.ddp_rec_model(
                #         img=micro['img_to_encoder'],
                #         c=micro['c'],
                #         behaviour='encoder_vae',
                #     )  # pred: (B, 3, 64, 64)

                eps = vae_out[self.latent_name] / self.triplane_scaling_divider
                # eps = vae_out.pop(self.latent_name)

                # if 'bg_plane' in vae_out:
                #     eps = th.cat((eps, vae_out['bg_plane']),
                #                  dim=1)  # include background, B 12+4 32 32

                # ! SD loss
                # cond = self.get_c_input(micro, bs=eps.shape[0])

                micro['img-c'] = {
                    'img': micro['img'].to(self.dtype),
                    'c': micro['c'].to(self.dtype),
                }

                loss, loss_other_info = self.loss_fn(self.ddp_ddpm_model,
                                                    #  self.denoiser,
                                                     self.conditioner, 
                                                     eps.to(self.dtype),
                                                     micro)  # type: ignore
                loss = loss.mean()
                log_rec3d_loss_dict({})

                log_rec3d_loss_dict({
                    # 'eps_mean':
                    # eps.mean(),
                    # 'eps_std':
                    # eps.std([1, 2, 3]).mean(0),
                    # 'pred_x0_std':
                    # loss_other_info['model_output'].std([1, 2, 3]).mean(0),
                    "p_loss":
                    loss,
                })

            self.mp_trainer.backward(loss)  # joint gradient descent

        # update ddpm accordingly
        self.mp_trainer.optimize(self.opt)

        # ! directly eval_cldm() for sampling.
        # if dist_util.get_rank() == 0 and self.step % 500 == 0:
        #     self.log_control_images(vae_out, micro, loss_other_info)

    @th.inference_mode()
    def log_control_images(self, vae_out, micro, ddpm_ret):

        if 'posterior' in vae_out:
            vae_out.pop('posterior')  # for calculating kl loss
        vae_out_for_pred = {self.latent_name: vae_out[self.latent_name][0:1].to(self.dtype)}

        with th.cuda.amp.autocast(dtype=self.dtype,
                                    enabled=self.mp_trainer.use_amp):
            pred = self.ddp_rec_model(latent=vae_out_for_pred,
                                    c=micro['c'][0:1],
                                    behaviour=self.render_latent_behaviour)

        assert isinstance(pred, dict)

        pred_img = pred['image_raw']
        if 'img' in micro:
            gt_img = micro['img']
        else:
            gt_img = th.zeros_like(pred['image_raw'])

        if 'depth' in micro:
            gt_depth = micro['depth']
            if gt_depth.ndim == 3:
                gt_depth = gt_depth.unsqueeze(1)
            gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
                                                      gt_depth.min())
        else:
            gt_depth = th.zeros_like(gt_img[:, 0:1, ...])

        if 'image_depth' in pred:
            pred_depth = pred['image_depth']
            pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
                                                            pred_depth.min())
        else:
            pred_depth = th.zeros_like(gt_depth)

        gt_img = self.pool_128(gt_img)
        gt_depth = self.pool_128(gt_depth)
        # cond = self.get_c_input(micro)
        # hint = th.cat(cond['c_concat'], 1)

        gt_vis = th.cat(
            [
                gt_img,
                gt_img,
                gt_img,
                # self.pool_128(hint),
                # gt_img,
                gt_depth.repeat_interleave(3, dim=1)
            ],
            dim=-1)[0:1]  # TODO, fail to load depth. range [0, 1]

        # eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L

        # self.sampler

        noised_latent, sigmas, x_start = [
            ddpm_ret[k] for k in ['noised_input', 'sigmas', 'model_output']
        ]

        noised_latent = {
            'latent_normalized_2Ddiffusion':
            noised_latent[0:1].to(self.dtype) * self.triplane_scaling_divider,
        }

        denoised_latent = {
            'latent_normalized_2Ddiffusion':
            x_start[0:1].to(self.dtype) * self.triplane_scaling_divider,
        }
         
        with th.cuda.amp.autocast(dtype=self.dtype,
                                    enabled=self.mp_trainer.use_amp):
            noised_ae_pred = self.ddp_rec_model(
                img=None,
                c=micro['c'][0:1],
                latent=noised_latent,
                behaviour=self.render_latent_behaviour)

            # pred_x0 = self.sde_diffusion._predict_x0_from_eps(
            # eps_t_p, pred_eps_p, logsnr_p)  # for VAE loss, denosied latent

            # pred_xstart_3D
            denoised_ae_pred = self.ddp_rec_model(
                img=None,
                c=micro['c'][0:1],
                latent=denoised_latent,
                # latent=pred_x0[0:1] * self.
                # triplane_scaling_divider,  # TODO, how to define the scale automatically?
                behaviour=self.render_latent_behaviour)

        pred_vis = th.cat(
            [
                self.pool_128(img) for img in (
                    pred_img[0:1],
                    noised_ae_pred['image_raw'][0:1],
                    denoised_ae_pred['image_raw'][0:1],  # controlnet result
                    pred_depth[0:1].repeat_interleave(3, dim=1))
            ],
            dim=-1)  # B, 3, H, W

        if 'img' in micro:
            vis = th.cat([gt_vis, pred_vis],
                         dim=-2)[0].permute(1, 2,
                                            0).cpu()  # ! pred in range[-1, 1]
        else:
            vis = pred_vis[0].permute(1, 2, 0).cpu()

        # vis_grid = torchvision.utils.make_grid(vis) # HWC
        vis = vis.numpy() * 127.5 + 127.5
        vis = vis.clip(0, 255).astype(np.uint8)
        img_save_path = f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{sigmas[0].item():3}.jpg'
        Image.fromarray(vis).save(img_save_path)

        # if self.cond_key == 'caption':
        #     with open(f'{logger.get_dir()}/{self.step+self.resume_step}caption_{t_p[0].item():3}.txt', 'w') as f:
        #         f.write(micro['caption'][0])

        print('log denoised vis to: ', img_save_path)

        th.cuda.empty_cache()

    @th.no_grad()
    def sample(
        self,
        cond: Dict,
        uc: Union[Dict, None] = None,
        batch_size: int = 16,
        shape: Union[None, Tuple, List] = None,
        use_cfg=True,
        # cfg_scale=4, # default value in SiT
        # cfg_scale=1.5, # default value in SiT
        cfg_scale=4.0, # default value in SiT
        **kwargs,
    ):
        # self.sampler
        sample_fn = self.transport_sampler.sample_ode(num_steps=250, cfg=True) # default ode sampling setting.

        # th.manual_seed(42) # reproducible
        zs = th.randn(batch_size, *shape).to(dist_util.dev()).to(self.dtype)
        assert use_cfg
        # sample_model_kwargs = {'uc': uc, 'cond': cond}       
        model_fn = self.ddpm_model.forward_with_cfg # default

        # ! prepare_inputs in VanillaCFG, for compat issue
        c_out = {}
        for k in cond:
            if k in ["vector", "crossattn", "concat"]:
                c_out[k] = th.cat((cond[k], uc[k]), 0)
            else:
                assert cond[k] == uc[k]
                c_out[k] = cond[k]

        sample_model_kwargs = {'context': c_out, 'cfg_scale': cfg_scale}
        zs = th.cat([zs, zs], 0)

        with th.cuda.amp.autocast(dtype=self.dtype,
                                    enabled=self.mp_trainer.use_amp):

            samples = sample_fn(zs, model_fn, **sample_model_kwargs)[-1]
            samples, _ = samples.chunk(2, dim=0)  # Remove null class samples

        return samples

    @th.inference_mode()
    def eval_cldm(
        self,
        prompt="",
        save_img=False,
        use_train_trajectory=False,
        camera=None,
        num_samples=1,
        num_instances=1,
        unconditional_guidance_scale=4.0, # default value in neural ode
        export_mesh=False,
        **kwargs,
    ):
        # ! slightly modified for new API. combined with
        # /cpfs01/shared/V2V/V2V_hdd/yslan/Repo/generative-models/sgm/models/diffusion.py:249 log_images()
        # TODO, support batch_size > 1

        self.ddpm_model.eval()
        # assert unconditional_guidance_scale == 4.0

        args = dnnlib.EasyDict(
            dict(
                batch_size=1,
                image_size=self.diffusion_input_size,
                denoise_in_channels=self.rec_model.decoder.triplane_decoder.
                out_chans,  # type: ignore
                clip_denoised=False,
                class_cond=False))

        model_kwargs = {}

        uc = None
        log = dict()

        ucg_keys = [self.cond_key] # i23d

        sampling_kwargs = {'cfg_scale': unconditional_guidance_scale}

        N = num_samples  # hard coded, to update
        z_shape = (
            N,
            self.ddpm_model.in_channels if not self.ddpm_model.roll_out else
            3 * self.ddpm_model.in_channels,  # type: ignore
            self.diffusion_input_size,
            self.diffusion_input_size)

        data = iter(self.data)

        def sample_and_save(batch_c,idx=0):

            with th.cuda.amp.autocast(dtype=self.dtype,
                                        enabled=self.mp_trainer.use_amp):

                c, uc = self.conditioner.get_unconditional_conditioning(
                    batch_c,
                    force_uc_zero_embeddings=ucg_keys
                    if len(self.conditioner.embedders) > 0 else [],
                )

            for k in c:
                if isinstance(c[k], th.Tensor):
                    # c[k], uc[k] = map(lambda y: y[k][:N].to(dist_util.dev()),
                    #                   (c, uc))
                    assert c[k].shape[0] == 1
                    c[k], uc[k] = map(lambda y: y[k].repeat_interleave(N, 0).to(dist_util.dev()),
                                    (c, uc)) # support bs>1 sampling given a condition
        
            samples = self.sample(c,
                                shape=z_shape[1:],
                                uc=uc,
                                batch_size=N,
                                **sampling_kwargs)
            # st() # do rendering first

            # ! get c
            (Path(logger.get_dir())/f'{self.step+self.resume_step}').mkdir(exist_ok=True, parents=True)
            if 'img' in self.cond_key:
                img_save_path = f'{logger.get_dir()}/{self.step+self.resume_step}/imgcond-{idx}.jpg'
                if 'c' in self.cond_key:
                    torchvision.utils.save_image(batch_c['img'][0], img_save_path, value_range=(-1,1), normalize=True, padding=0) # torch.Size([24, 6, 3, 256, 256])
                else:
                    torchvision.utils.save_image(batch_c['img'], img_save_path, value_range=(-1,1), normalize=True, padding=0)

            assert camera is not None
            batch = {'c': camera.clone()[:24]}

            # rendering
            for i in range(samples.shape[0]):
                th.cuda.empty_cache()

                # ! render sampled latent
                name_prefix = f'idx-{idx}-cfg={unconditional_guidance_scale}_sample-{i}'

                if self.cond_key == 'caption':
                    name_prefix = f'{name_prefix}_{prompt}'

                with th.cuda.amp.autocast(dtype=self.dtype,
                                            enabled=self.mp_trainer.use_amp):

                    self.render_video_given_triplane(
                        samples[i:i+1].to(self.dtype),
                        self.rec_model,  # compatible with join_model
                        name_prefix=name_prefix,
                        save_img=save_img,
                        render_reference=batch,
                        export_mesh=export_mesh, 
                        render_all=True)

        if self.cond_key == 'caption':
            batch_c = {self.cond_key: prompt}
            sample_and_save(batch_c)
        else: 
            for idx, batch in enumerate(data):
            # batch = next(data) # using same cond here
                if self.cond_key == 'img-c':
                    batch_c = {
                        self.cond_key: {
                            'img': batch['img'].to(self.dtype).to(dist_util.dev()),
                            'c': batch['c'].to(self.dtype).to(dist_util.dev()),
                        },
                        'img': batch['img'].to(self.dtype).to(dist_util.dev()) # required by clip
                    }

                else:
                    batch_c = {self.cond_key: batch[self.cond_key].to(dist_util.dev()).to(self.dtype)}
                sample_and_save(batch_c, idx) 


        self.ddpm_model.train()


    @th.inference_mode()
    def eval_i23d_and_export(
        self,
        inp_img,
        num_steps=250,
        seed=42,
        mesh_size=192,
        mesh_thres=10,
        unconditional_guidance_scale=4.0, # default value in neural ode
        # camera,
        prompt="",
        save_img=False,
        use_train_trajectory=False,
        num_samples=1,
        num_instances=1,
        export_mesh=True,
        **kwargs,
    ):

        # output_model, output_video = './logs/LSGM/inference/Objaverse/i23d/dit-L2/gradio_app/mesh/cfg=4.0_sample-0.obj', './logs/LSGM/inference/Objaverse/i23d/dit-L2/gradio_app/triplane_cfg=4.0_sample-0.mp4'

        # return output_model, output_video
        logger.log(
            num_steps,
            unconditional_guidance_scale,
            seed,
            mesh_size,
            mesh_thres,
        )

        camera = th.load('assets/objv_eval_pose.pt', map_location=dist_util.dev())[:]
        inp_img = th.from_numpy(inp_img).permute(2,0,1).unsqueeze(0) / 127.5 - 1 # to [-1,1]

        # for gradio demo

        self.ddpm_model.eval()
        # assert unconditional_guidance_scale == 4.0

        args = dnnlib.EasyDict(
            dict(
                batch_size=1,
                image_size=self.diffusion_input_size,
                denoise_in_channels=self.rec_model.decoder.triplane_decoder.
                out_chans,  # type: ignore
                clip_denoised=False,
                class_cond=False))

        model_kwargs = {}

        uc = None
        log = dict()

        ucg_keys = [self.cond_key] # i23d

        sampling_kwargs = {'cfg_scale': unconditional_guidance_scale, 'num_steps': num_steps, 'seed': seed}

        N = num_samples  # hard coded, to update
        z_shape = (
            N,
            self.ddpm_model.in_channels if not self.ddpm_model.roll_out else
            3 * self.ddpm_model.in_channels,  # type: ignore
            self.diffusion_input_size,
            self.diffusion_input_size)

        # data = iter(self.data)

        assert camera is not None
        batch = {'c': camera.clone()[:24]}

        def sample_and_save(batch_c):

            with th.cuda.amp.autocast(dtype=self.dtype,
                                        enabled=self.mp_trainer.use_amp):

                c, uc = self.conditioner.get_unconditional_conditioning(
                    batch_c,
                    force_uc_zero_embeddings=ucg_keys
                    if len(self.conditioner.embedders) > 0 else [],
                )

            for k in c:
                if isinstance(c[k], th.Tensor):
                    # c[k], uc[k] = map(lambda y: y[k][:N].to(dist_util.dev()),
                    #                   (c, uc))
                    assert c[k].shape[0] == 1
                    c[k], uc[k] = map(lambda y: y[k].repeat_interleave(N, 0).to(dist_util.dev()),
                                    (c, uc)) # support bs>1 sampling given a condition
        
            samples = self.sample(c,
                                shape=z_shape[1:],
                                uc=uc,
                                batch_size=N,
                                **sampling_kwargs)

            # rendering
            all_vid_dump_path = []
            all_mesh_dump_path = []
            for i in range(samples.shape[0]):
                th.cuda.empty_cache()

                # ! render sampled latent
                name_prefix = f'cfg_{unconditional_guidance_scale}_sample-{i}'

                if self.cond_key == 'caption':
                    name_prefix = f'{name_prefix}_{prompt}'

                with th.cuda.amp.autocast(dtype=self.dtype,
                                            enabled=self.mp_trainer.use_amp):

                    vid_dump_path, mesh_dump_path = self.render_video_given_triplane(
                        samples[i:i+1].to(self.dtype),
                        self.rec_model,  # compatible with join_model
                        name_prefix=name_prefix,
                        save_img=save_img,
                        render_reference=batch,
                        export_mesh=export_mesh, 
                        render_all=True,
                        mesh_size=mesh_size,
                        mesh_thres=mesh_thres)

                    all_vid_dump_path.append(vid_dump_path)
                    all_mesh_dump_path.append(mesh_dump_path)

            # return all_vid_dump_path, all_mesh_dump_path
            return all_vid_dump_path[0], all_mesh_dump_path[0] # for compat issue


        if self.cond_key == 'caption':
            batch_c = {self.cond_key: prompt}
            return sample_and_save(batch_c)
        else: 
            # for idx, batch in enumerate(data):
            # batch = next(data) # using same cond here
                # if self.cond_key == 'img-c':
                #     batch_c = {
                #         self.cond_key: {
                #             'img': batch['img'].to(self.dtype).to(dist_util.dev()),
                #             'c': batch['c'].to(self.dtype).to(dist_util.dev()),
                #         },
                #         'img': batch['img'].to(self.dtype).to(dist_util.dev()) # required by clip
                #     }

                # else:
            batch_c = {self.cond_key: inp_img.to(dist_util.dev()).to(self.dtype)}
            return sample_and_save(batch_c)