Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,211 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Streaming images and labels from datasets created with dataset_tool.py."""
import cv2
import os
import numpy as np
import zipfile
import PIL.Image
import json
import torch
import dnnlib
from torchvision import transforms
from pdb import set_trace as st
from .shapenet import LMDBDataset_MV_Compressed, decompress_array
try:
import pyspng
except ImportError:
pyspng = None
#----------------------------------------------------------------------------
# copide from eg3d/train.py
def init_dataset_kwargs(data,
class_name='datasets.eg3d_dataset.ImageFolderDataset',
reso_gt=128):
# try:
# if data == 'None':
# dataset_kwargs = dnnlib.EasyDict({}) #
# dataset_kwargs.name = 'eg3d_dataset'
# dataset_kwargs.resolution = 128
# dataset_kwargs.use_labels = False
# dataset_kwargs.max_size = 70000
# return dataset_kwargs, 'eg3d_dataset'
dataset_kwargs = dnnlib.EasyDict(class_name=class_name,
reso_gt=reso_gt,
path=data,
use_labels=True,
max_size=None,
xflip=False)
dataset_obj = dnnlib.util.construct_class_by_name(
**dataset_kwargs) # Subclass of training.dataset.Dataset.
dataset_kwargs.resolution = dataset_obj.resolution # Be explicit about resolution.
dataset_kwargs.use_labels = dataset_obj.has_labels # Be explicit about labels.
dataset_kwargs.max_size = len(
dataset_obj) # Be explicit about dataset size.
return dataset_kwargs, dataset_obj.name
# except IOError as err:
# raise click.ClickException(f'--data: {err}')
class Dataset(torch.utils.data.Dataset):
def __init__(
self,
name, # Name of the dataset.
raw_shape, # Shape of the raw image data (NCHW).
reso_gt=128,
max_size=None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
use_labels=False, # Enable conditioning labels? False = label dimension is zero.
xflip=False, # Artificially double the size of the dataset via x-flips. Applied after max_size.
random_seed=0, # Random seed to use when applying max_size.
):
self._name = name
self._raw_shape = list(raw_shape)
self._use_labels = use_labels
self._raw_labels = None
self._label_shape = None
# self.reso_gt = 128
self.reso_gt = reso_gt # ! hard coded
self.reso_encoder = 224
# Apply max_size.
self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
# self._raw_idx = np.arange(self.__len__(), dtype=np.int64)
if (max_size is not None) and (self._raw_idx.size > max_size):
np.random.RandomState(random_seed).shuffle(self._raw_idx)
self._raw_idx = np.sort(self._raw_idx[:max_size])
# Apply xflip.
self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
if xflip:
self._raw_idx = np.tile(self._raw_idx, 2)
self._xflip = np.concatenate(
[self._xflip, np.ones_like(self._xflip)])
# dino encoder normalizer
self.normalize_for_encoder_input = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
transforms.Resize(size=(self.reso_encoder, self.reso_encoder),
antialias=True), # type: ignore
])
self.normalize_for_gt = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
transforms.Resize(size=(self.reso_gt, self.reso_gt),
antialias=True), # type: ignore
])
def _get_raw_labels(self):
if self._raw_labels is None:
self._raw_labels = self._load_raw_labels(
) if self._use_labels else None
if self._raw_labels is None:
self._raw_labels = np.zeros([self._raw_shape[0], 0],
dtype=np.float32)
assert isinstance(self._raw_labels, np.ndarray)
# assert self._raw_labels.shape[0] == self._raw_shape[0]
assert self._raw_labels.dtype in [np.float32, np.int64]
if self._raw_labels.dtype == np.int64:
assert self._raw_labels.ndim == 1
assert np.all(self._raw_labels >= 0)
self._raw_labels_std = self._raw_labels.std(0)
return self._raw_labels
def close(self): # to be overridden by subclass
pass
def _load_raw_image(self, raw_idx): # to be overridden by subclass
raise NotImplementedError
def _load_raw_labels(self): # to be overridden by subclass
raise NotImplementedError
def __getstate__(self):
return dict(self.__dict__, _raw_labels=None)
def __del__(self):
try:
self.close()
except:
pass
def __len__(self):
return self._raw_idx.size
# return self._get_raw_labels().shape[0]
def __getitem__(self, idx):
# print(self._raw_idx[idx], idx)
matte = self._load_raw_matte(self._raw_idx[idx])
assert isinstance(matte, np.ndarray)
assert list(matte.shape)[1:] == self.image_shape[1:]
if self._xflip[idx]:
assert matte.ndim == 1 # CHW
matte = matte[:, :, ::-1]
# matte_orig = matte.copy().astype(np.float32) / 255
matte_orig = matte.copy().astype(np.float32) # segmentation version
# assert matte_orig.max() == 1
matte = np.transpose(matte,
# (1, 2, 0)).astype(np.float32) / 255 # [0,1] range
(1, 2, 0)).astype(np.float32) # [0,1] range
matte = cv2.resize(matte, (self.reso_gt, self.reso_gt),
interpolation=cv2.INTER_NEAREST)
assert matte.min() >= 0 and matte.max(
) <= 1, f'{matte.min(), matte.max()}'
if matte.ndim == 3: # H, W
matte = matte[..., 0]
image = self._load_raw_image(self._raw_idx[idx])
assert isinstance(image, np.ndarray)
assert list(image.shape) == self.image_shape
assert image.dtype == np.uint8
if self._xflip[idx]:
assert image.ndim == 3 # CHW
image = image[:, :, ::-1]
# blending
# blending = True
blending = False
if blending:
image = image * matte_orig + (1 - matte_orig) * cv2.GaussianBlur(
image, (5, 5), cv2.BORDER_DEFAULT)
# image = image * matte_orig
image = np.transpose(image, (1, 2, 0)).astype(
np.float32
) / 255 # H W C for torchvision process, normalize to [0,1]
image_sr = torch.from_numpy(image)[..., :3].permute(
2, 0, 1) * 2 - 1 # normalize to [-1,1]
image_to_encoder = self.normalize_for_encoder_input(image)
image_gt = cv2.resize(image, (self.reso_gt, self.reso_gt),
interpolation=cv2.INTER_AREA)
image_gt = torch.from_numpy(image_gt)[..., :3].permute(
2, 0, 1) * 2 - 1 # normalize to [-1,1]
return dict(
c=self.get_label(idx),
img_to_encoder=image_to_encoder, # 224
img_sr=image_sr, # 512
img=image_gt, # [-1,1] range
# depth=torch.zeros_like(image_gt)[0, ...] # type: ignore
depth=matte,
depth_mask=matte,
# depth_mask=matte > 0,
# alpha=matte,
) # return dict here
def get_label(self, idx):
label = self._get_raw_labels()[self._raw_idx[idx]]
if label.dtype == np.int64:
onehot = np.zeros(self.label_shape, dtype=np.float32)
onehot[label] = 1
label = onehot
return label.copy()
def get_details(self, idx):
d = dnnlib.EasyDict()
d.raw_idx = int(self._raw_idx[idx])
d.xflip = (int(self._xflip[idx]) != 0)
d.raw_label = self._get_raw_labels()[d.raw_idx].copy()
return d
def get_label_std(self):
return self._raw_labels_std
@property
def name(self):
return self._name
@property
def image_shape(self):
return list(self._raw_shape[1:])
@property
def num_channels(self):
assert len(self.image_shape) == 3 # CHW
return self.image_shape[0]
@property
def resolution(self):
assert len(self.image_shape) == 3 # CHW
assert self.image_shape[1] == self.image_shape[2]
return self.image_shape[1]
@property
def label_shape(self):
if self._label_shape is None:
raw_labels = self._get_raw_labels()
if raw_labels.dtype == np.int64:
self._label_shape = [int(np.max(raw_labels)) + 1]
else:
self._label_shape = raw_labels.shape[1:]
return list(self._label_shape)
@property
def label_dim(self):
assert len(self.label_shape) == 1
return self.label_shape[0]
@property
def has_labels(self):
return any(x != 0 for x in self.label_shape)
@property
def has_onehot_labels(self):
return self._get_raw_labels().dtype == np.int64
#----------------------------------------------------------------------------
class ImageFolderDataset(Dataset):
def __init__(
self,
path, # Path to directory or zip.
resolution=None, # Ensure specific resolution, None = highest available.
reso_gt=128,
**super_kwargs, # Additional arguments for the Dataset base class.
):
self._path = path
# self._matte_path = path.replace('unzipped_ffhq_512',
# 'unzipped_ffhq_matte')
self._matte_path = path.replace('unzipped_ffhq_512',
'ffhq_512_seg')
self._zipfile = None
if os.path.isdir(self._path):
self._type = 'dir'
self._all_fnames = {
os.path.relpath(os.path.join(root, fname), start=self._path)
for root, _dirs, files in os.walk(self._path)
for fname in files
}
elif self._file_ext(self._path) == '.zip':
self._type = 'zip'
self._all_fnames = set(self._get_zipfile().namelist())
else:
raise IOError('Path must point to a directory or zip')
PIL.Image.init()
self._image_fnames = sorted(
fname for fname in self._all_fnames
if self._file_ext(fname) in PIL.Image.EXTENSION)
if len(self._image_fnames) == 0:
raise IOError('No image files found in the specified path')
name = os.path.splitext(os.path.basename(self._path))[0]
raw_shape = [len(self._image_fnames)] + list(
self._load_raw_image(0).shape)
# raw_shape = [len(self._image_fnames)] + list(
# self._load_raw_image(0).shape)
if resolution is not None and (raw_shape[2] != resolution
or raw_shape[3] != resolution):
raise IOError('Image files do not match the specified resolution')
super().__init__(name=name,
raw_shape=raw_shape,
reso_gt=reso_gt,
**super_kwargs)
@staticmethod
def _file_ext(fname):
return os.path.splitext(fname)[1].lower()
def _get_zipfile(self):
assert self._type == 'zip'
if self._zipfile is None:
self._zipfile = zipfile.ZipFile(self._path)
return self._zipfile
def _open_file(self, fname):
if self._type == 'dir':
return open(os.path.join(self._path, fname), 'rb')
if self._type == 'zip':
return self._get_zipfile().open(fname, 'r')
return None
def _open_matte_file(self, fname):
if self._type == 'dir':
return open(os.path.join(self._matte_path, fname), 'rb')
# if self._type == 'zip':
# return self._get_zipfile().open(fname, 'r')
# return None
def close(self):
try:
if self._zipfile is not None:
self._zipfile.close()
finally:
self._zipfile = None
def __getstate__(self):
return dict(super().__getstate__(), _zipfile=None)
def _load_raw_image(self, raw_idx):
fname = self._image_fnames[raw_idx]
with self._open_file(fname) as f:
if pyspng is not None and self._file_ext(fname) == '.png':
image = pyspng.load(f.read())
else:
image = np.array(PIL.Image.open(f))
if image.ndim == 2:
image = image[:, :, np.newaxis] # HW => HWC
image = image.transpose(2, 0, 1) # HWC => CHW
return image
def _load_raw_matte(self, raw_idx):
# ! from seg version
fname = self._image_fnames[raw_idx]
with self._open_matte_file(fname) as f:
if pyspng is not None and self._file_ext(fname) == '.png':
image = pyspng.load(f.read())
else:
image = np.array(PIL.Image.open(f))
# if image.max() != 1:
image = (image > 0).astype(np.float32) # process segmentation
if image.ndim == 2:
image = image[:, :, np.newaxis] # HW => HWC
image = image.transpose(2, 0, 1) # HWC => CHW
return image
def _load_raw_matte_orig(self, raw_idx):
fname = self._image_fnames[raw_idx]
with self._open_matte_file(fname) as f:
if pyspng is not None and self._file_ext(fname) == '.png':
image = pyspng.load(f.read())
else:
image = np.array(PIL.Image.open(f))
st() # process segmentation
if image.ndim == 2:
image = image[:, :, np.newaxis] # HW => HWC
image = image.transpose(2, 0, 1) # HWC => CHW
return image
def _load_raw_labels(self):
fname = 'dataset.json'
if fname not in self._all_fnames:
return None
with self._open_file(fname) as f:
# st()
labels = json.load(f)['labels']
if labels is None:
return None
labels = dict(labels)
labels_ = []
for fname, _ in labels.items():
# if 'mirror' not in fname:
labels_.append(labels[fname])
labels = labels_
# !
# labels = [
# labels[fname.replace('\\', '/')] for fname in self._image_fnames
# ]
labels = np.array(labels)
labels = labels.astype({1: np.int64, 2: np.float32}[labels.ndim])
self._raw_labels = labels
return labels
#----------------------------------------------------------------------------
# class ImageFolderDatasetUnzipped(ImageFolderDataset):
# def __init__(self, path, resolution=None, **super_kwargs):
# super().__init__(path, resolution, **super_kwargs)
# class ImageFolderDatasetPose(ImageFolderDataset):
# def __init__(
# self,
# path, # Path to directory or zip.
# resolution=None, # Ensure specific resolution, None = highest available.
# **super_kwargs, # Additional arguments for the Dataset base class.
# ):
# super().__init__(path, resolution, **super_kwargs)
# # only return labels
# def __len__(self):
# return self._raw_idx.size
# # return self._get_raw_labels().shape[0]
# def __getitem__(self, idx):
# # image = self._load_raw_image(self._raw_idx[idx])
# # assert isinstance(image, np.ndarray)
# # assert list(image.shape) == self.image_shape
# # assert image.dtype == np.uint8
# # if self._xflip[idx]:
# # assert image.ndim == 3 # CHW
# # image = image[:, :, ::-1]
# return dict(c=self.get_label(idx), ) # return dict here
class ImageFolderDatasetLMDB(ImageFolderDataset):
def __init__(self, path, resolution=None, reso_gt=128, **super_kwargs):
super().__init__(path, resolution, reso_gt, **super_kwargs)
def __getitem__(self, idx):
# print(self._raw_idx[idx], idx)
matte = self._load_raw_matte(self._raw_idx[idx])
assert isinstance(matte, np.ndarray)
assert list(matte.shape)[1:] == self.image_shape[1:]
if self._xflip[idx]:
assert matte.ndim == 1 # CHW
matte = matte[:, :, ::-1]
# matte_orig = matte.copy().astype(np.float32) / 255
matte_orig = matte.copy().astype(np.float32) # segmentation version
assert matte_orig.max() <= 1 # some ffhq images are dirty, so may be all zero
matte = np.transpose(matte,
# (1, 2, 0)).astype(np.float32) / 255 # [0,1] range
(1, 2, 0)).astype(np.float32) # [0,1] range
# ! load 512 matte
# matte = cv2.resize(matte, (self.reso_gt, self.reso_gt),
# interpolation=cv2.INTER_NEAREST)
assert matte.min() >= 0 and matte.max(
) <= 1, f'{matte.min(), matte.max()}'
if matte.ndim == 3: # H, W
matte = matte[..., 0]
image = self._load_raw_image(self._raw_idx[idx])
assert isinstance(image, np.ndarray)
assert list(image.shape) == self.image_shape
assert image.dtype == np.uint8
if self._xflip[idx]:
assert image.ndim == 3 # CHW
image = image[:, :, ::-1]
# blending
# blending = True
# blending = False
# if blending:
# image = image * matte_orig + (1 - matte_orig) * cv2.GaussianBlur(
# image, (5, 5), cv2.BORDER_DEFAULT)
# image = image * matte_orig
# image = np.transpose(image, (1, 2, 0)).astype(
# np.float32
# ) / 255 # H W C for torchvision process, normalize to [0,1]
# image_sr = torch.from_numpy(image)[..., :3].permute(
# 2, 0, 1) * 2 - 1 # normalize to [-1,1]
# image_to_encoder = self.normalize_for_encoder_input(image)
# image_gt = cv2.resize(image, (self.reso_gt, self.reso_gt),
# interpolation=cv2.INTER_AREA)
# image_gt = torch.from_numpy(image_gt)[..., :3].permute(
# 2, 0, 1) * 2 - 1 # normalize to [-1,1]
return dict(
c=self.get_label(idx),
# img_to_encoder=image_to_encoder, # 224
# img_sr=image_sr, # 512
img=image, # [-1,1] range
# depth=torch.zeros_like(image_gt)[0, ...] # type: ignore
# depth=matte,
depth_mask=matte,
) # return dict here
class LMDBDataset_MV_Compressed_eg3d(LMDBDataset_MV_Compressed):
def __init__(self,
lmdb_path,
reso,
reso_encoder,
imgnet_normalize=True,
**kwargs):
super().__init__(lmdb_path, reso, reso_encoder, imgnet_normalize,
**kwargs)
self.normalize_for_encoder_input = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
transforms.Resize(size=(self.reso_encoder, self.reso_encoder),
antialias=True), # type: ignore
])
self.normalize_for_gt = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
transforms.Resize(size=(self.reso, self.reso),
antialias=True), # type: ignore
])
def __getitem__(self, idx):
# sample = super(LMDBDataset).__getitem__(idx)
# do gzip uncompress online
with self.env.begin(write=False) as txn:
img_key = f'{idx}-img'.encode('utf-8')
image = self.load_image_fn(txn.get(img_key))
depth_key = f'{idx}-depth_mask'.encode('utf-8')
# depth = decompress_array(txn.get(depth_key), (512,512), np.float32)
depth = decompress_array(txn.get(depth_key), (64,64), np.float32)
c_key = f'{idx}-c'.encode('utf-8')
c = decompress_array(txn.get(c_key), (25, ), np.float32)
# ! post processing, e.g., normalizing
depth = cv2.resize(depth, (self.reso, self.reso),
interpolation=cv2.INTER_NEAREST)
image = np.transpose(image, (1, 2, 0)).astype(
np.float32
) / 255 # H W C for torchvision process, normalize to [0,1]
image_sr = torch.from_numpy(image)[..., :3].permute(
2, 0, 1) * 2 - 1 # normalize to [-1,1]
image_to_encoder = self.normalize_for_encoder_input(image)
image_gt = cv2.resize(image, (self.reso, self.reso),
interpolation=cv2.INTER_AREA)
image_gt = torch.from_numpy(image_gt)[..., :3].permute(
2, 0, 1) * 2 - 1 # normalize to [-1,1]
return {
'img_to_encoder': image_to_encoder, # 224
'img_sr': image_sr, # 512
'img': image_gt, # [-1,1] range
'c': c,
'depth': depth,
'depth_mask': depth,
}
|