Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,803 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import torch
import torch.nn as nn
import torchvision
EPS = 1e-7
class ConfNet(nn.Module):
def __init__(self, cin=3, cout=1, zdim=128, nf=64):
super(ConfNet, self).__init__()
## downsampling
network = [
nn.Conv2d(cin, nf, kernel_size=4, stride=2, padding=1, bias=False), # 64x64 -> 32x32
nn.GroupNorm(16, nf),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf, nf*2, kernel_size=4, stride=2, padding=1, bias=False), # 32x32 -> 16x16
nn.GroupNorm(16*2, nf*2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf*2, nf*4, kernel_size=4, stride=2, padding=1, bias=False), # 16x16 -> 8x8
nn.GroupNorm(16*4, nf*4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf*4, nf*8, kernel_size=4, stride=2, padding=1, bias=False), # 8x8 -> 4x4
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf*8, zdim, kernel_size=4, stride=1, padding=0, bias=False), # 4x4 -> 1x1
nn.ReLU(inplace=True)]
## upsampling
network += [
nn.ConvTranspose2d(zdim, nf*8, kernel_size=4, padding=0, bias=False), # 1x1 -> 4x4
nn.ReLU(inplace=True),
nn.ConvTranspose2d(nf*8, nf*4, kernel_size=4, stride=2, padding=1, bias=False), # 4x4 -> 8x8
nn.GroupNorm(16*4, nf*4),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(nf*4, nf*2, kernel_size=4, stride=2, padding=1, bias=False), # 8x8 -> 16x16
nn.GroupNorm(16*2, nf*2),
nn.ReLU(inplace=True)]
self.network = nn.Sequential(*network)
# ! only the symmetric confidence is required
# out_net1 = [
# nn.ConvTranspose2d(nf*2, nf, kernel_size=4, stride=2, padding=1, bias=False), # 16x16 -> 32x32
# nn.GroupNorm(16, nf),
# nn.ReLU(inplace=True),
# nn.ConvTranspose2d(nf, nf, kernel_size=4, stride=2, padding=1, bias=False), # 32x32 -> 64x64
# nn.GroupNorm(16, nf),
# nn.ReLU(inplace=True),
# nn.Conv2d(nf, 2, kernel_size=5, stride=1, padding=2, bias=False), # 64x64
# # nn.Conv2d(nf, 1, kernel_size=5, stride=1, padding=2, bias=False), # 64x64
# nn.Softplus()
# ]
# self.out_net1 = nn.Sequential(*out_net1)
# ! for perceptual loss
out_net2 = [nn.Conv2d(nf*2, 2, kernel_size=3, stride=1, padding=1, bias=False), # 16x16
nn.Softplus()
# nn.Sigmoid()
]
self.out_net2 = nn.Sequential(*out_net2)
def forward(self, input):
out = self.network(input)
# return self.out_net1(out)
return self.out_net2(out)
# return self.out_net1(out), self.out_net2(out) |