File size: 27,636 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
"""
https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py#L30
"""
import copy

from matplotlib import pyplot as plt
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
from typing import Any
import einops
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm

from guided_diffusion import dist_util, logger
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion.nn import update_ema
from guided_diffusion.resample import LossAwareSampler, UniformSampler
# from .train_util import TrainLoop3DRec
from guided_diffusion.train_util import (TrainLoop, calc_average_loss,
                                         find_ema_checkpoint,
                                         find_resume_checkpoint,
                                         get_blob_logdir, log_loss_dict,
                                         log_rec3d_loss_dict,
                                         parse_resume_step_from_filename)
from guided_diffusion.gaussian_diffusion import ModelMeanType

from ldm.modules.encoders.modules import FrozenClipImageEmbedder, TextEmbedder, FrozenCLIPTextEmbedder

import dnnlib
from dnnlib.util import requires_grad
from dnnlib.util import calculate_adaptive_weight

from ..train_util_diffusion import TrainLoop3DDiffusion
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD

from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction, different_p_q_objectives, kl_per_group_vada, kl_balancer
# from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD  # joint diffusion and rec class
# from .controlLDM import TrainLoop3DDiffusionLSGM_Control  # joint diffusion and rec class
from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD  # joint diffusion and rec class

__conditioning_keys__ = {
    'concat': 'c_concat',
    'crossattn': 'c_crossattn',
    'adm': 'y'
}


def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self


class TrainLoop3DDiffusionLSGM_crossattn(TrainLoop3DDiffusionLSGMJointnoD):

    def __init__(self,
                 *,
                 rec_model,
                 denoise_model,
                 diffusion,
                 sde_diffusion,
                 control_model,
                 control_key,
                 only_mid_control,
                 loss_class,
                 data,
                 eval_data,
                 batch_size,
                 microbatch,
                 lr,
                 ema_rate,
                 log_interval,
                 eval_interval,
                 save_interval,
                 resume_checkpoint,
                 resume_cldm_checkpoint=None,
                 use_fp16=False,
                 fp16_scale_growth=0.001,
                 schedule_sampler=None,
                 weight_decay=0,
                 lr_anneal_steps=0,
                 iterations=10001,
                 ignore_resume_opt=False,
                 freeze_ae=False,
                 denoised_ae=True,
                 triplane_scaling_divider=10,
                 use_amp=False,
                 diffusion_input_size=224,
                 normalize_clip_encoding=False,
                 scale_clip_encoding=1.0,
                 cfg_dropout_prob=0.,
                 cond_key='img_sr',
                 **kwargs):
        super().__init__(rec_model=rec_model,
                         denoise_model=denoise_model,
                         diffusion=diffusion,
                         sde_diffusion=sde_diffusion,
                         control_model=control_model,
                         control_key=control_key,
                         only_mid_control=only_mid_control,
                         loss_class=loss_class,
                         data=data,
                         eval_data=eval_data,
                         batch_size=batch_size,
                         microbatch=microbatch,
                         lr=lr,
                         ema_rate=ema_rate,
                         log_interval=log_interval,
                         eval_interval=eval_interval,
                         save_interval=save_interval,
                         resume_checkpoint=resume_checkpoint,
                         resume_cldm_checkpoint=resume_cldm_checkpoint,
                         use_fp16=use_fp16,
                         fp16_scale_growth=fp16_scale_growth,
                         schedule_sampler=schedule_sampler,
                         weight_decay=weight_decay,
                         lr_anneal_steps=lr_anneal_steps,
                         iterations=iterations,
                         ignore_resume_opt=ignore_resume_opt,
                         freeze_ae=freeze_ae,
                         denoised_ae=denoised_ae,
                         triplane_scaling_divider=triplane_scaling_divider,
                         use_amp=use_amp,
                         diffusion_input_size=diffusion_input_size,
                         **kwargs)
        self.conditioning_key = 'c_crossattn'
        self.cond_key = cond_key
        self.instantiate_cond_stage(normalize_clip_encoding,
                                    scale_clip_encoding, cfg_dropout_prob)
        requires_grad(self.rec_model, False)
        self.rec_model.eval()
        # self.normalize_clip_encoding = normalize_clip_encoding
        # self.cfg_dropout_prob = cfg_dropout_prob

    def instantiate_cond_stage(self, normalize_clip_encoding,
                               scale_clip_encoding, cfg_dropout_prob):
        # https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py#L509C1-L509C46
        # self.cond_stage_model.train = disabled_train  # type: ignore
        # st()
        if self.cond_key == 'caption':  # for objaverse training (with extracted cap3d caption)
            self.cond_txt_model = TextEmbedder(dropout_prob=cfg_dropout_prob)
        else:  # zero-shot Text to 3D using normalized clip latent
            self.cond_stage_model = FrozenClipImageEmbedder(
                'ViT-L/14',
                dropout_prob=cfg_dropout_prob,
                normalize_encoding=normalize_clip_encoding,
                scale_clip_encoding=scale_clip_encoding)
            self.cond_stage_model.freeze()

            self.cond_txt_model = FrozenCLIPTextEmbedder(
                dropout_prob=cfg_dropout_prob,
                scale_clip_encoding=scale_clip_encoding)
            self.cond_txt_model.freeze()

    @th.no_grad()
    def get_c_input(self,
                    batch,
                    bs=None,
                    use_text=False,
                    prompt="",
                    *args,
                    **kwargs):

        # using clip to transform control to tokens for crossattn
        cond_inp = None

        if self.cond_key == 'caption':
            c = self.cond_txt_model(
                cond_inp, train=self.ddpm_model.training
            )  # ! SD training text condition injection layer
            # st() # check whether context repeat?
        else:  # zero shot
            if use_text:  # for test
                assert prompt != ""
                c = self.cond_txt_model.encode(prompt)  # ! for test
                # st()
            else:

                cond_inp = batch[self.cond_key]
                if bs is not None:
                    cond_inp = cond_inp[:bs]

                cond_inp = cond_inp.to(
                    memory_format=th.contiguous_format).float()
                c = self.cond_stage_model(cond_inp)  # BS 768

        # return dict(c_concat=[control])
        # return  dict(c_crossattn=[c], c_concat=[control])
        # return dict(__conditioning_keys__[self.cond_key]=)
        # return {self.conditioning_key: [c], 'c_concat': [cond_inp]}
        return {self.conditioning_key: c, 'c_concat': [cond_inp]}

    # TODO, merge the APIs
    def apply_model_inference(self, x_noisy, t, c, model_kwargs={}):
        pred_params = self.ddp_ddpm_model(
            x_noisy, t, **{
                **model_kwargs, 'context': c['c_crossattn']
            })
        return pred_params

    def apply_model(self, p_sample_batch, cond, model_kwargs={}):
        return super().apply_model(
            p_sample_batch, **{
                **model_kwargs, 'context': cond['c_crossattn']
            })

    def run_step(self, batch, step='ldm_step'):

        # if step == 'diffusion_step_rec':

        if step == 'ldm_step':
            self.ldm_train_step(batch)

        # if took_step_ddpm:
        # self._update_cldm_ema()

        self._anneal_lr()
        self.log_step()

    def run_loop(self):
        while (not self.lr_anneal_steps
               or self.step + self.resume_step < self.lr_anneal_steps):

            # let all processes sync up before starting with a new epoch of training
            # dist_util.synchronize()

            batch = next(self.data)
            self.run_step(batch, step='ldm_step')

            if self.step % self.log_interval == 0 and dist_util.get_rank(
            ) == 0:
                out = logger.dumpkvs()
                # * log to tensorboard
                for k, v in out.items():
                    self.writer.add_scalar(f'Loss/{k}', v,
                                           self.step + self.resume_step)

            # if self.step % self.eval_interval == 0 and self.step != 0:
            if self.step % self.eval_interval == 0:
                if dist_util.get_rank() == 0:
                    # self.eval_ddpm_sample()
                    # self.eval_cldm(use_ddim=True, unconditional_guidance_scale=7.5, prompt="") # during training, use image as condition
                    self.eval_cldm(use_ddim=False,
                                   prompt="")  # fix condition bug first
                    # if self.sde_diffusion.args.train_vae:
                    #     self.eval_loop()

                th.cuda.empty_cache()
                dist_util.synchronize()

            if self.step % self.save_interval == 0:
                self.save(self.mp_trainer, self.mp_trainer.model_name)
                if os.environ.get("DIFFUSION_TRAINING_TEST",
                                  "") and self.step > 0:
                    return

            self.step += 1

            if self.step > self.iterations:
                print('reached maximum iterations, exiting')

                # Save the last checkpoint if it wasn't already saved.
                if (self.step - 1) % self.save_interval != 0:

                    self.save(self.mp_trainer, self.mp_trainer.model_name)
                    # if self.sde_diffusion.args.train_vae:
                    #     self.save(self.mp_trainer_rec,
                    #               self.mp_trainer_rec.model_name)

                exit()

        # Save the last checkpoint if it wasn't already saved.
        if (self.step - 1) % self.save_interval != 0:
            self.save(self.mp_trainer,
                      self.mp_trainer.model_name)  # rec and ddpm all fixed.
            # st()
            # self.save(self.mp_trainer_canonical_cvD, 'cvD')

    # ddpm + rec loss
    def ldm_train_step(self, batch, behaviour='cano', *args, **kwargs):
        """
        add sds grad to all ae predicted x_0 
        """

        # ! enable the gradient of both models
        requires_grad(self.ddpm_model, True)

        self.mp_trainer.zero_grad()  # !!!!

        batch_size = batch['img'].shape[0]

        for i in range(0, batch_size, self.microbatch):

            micro = {
                k:
                v[i:i + self.microbatch].to(dist_util.dev()) if isinstance(
                    v, th.Tensor) else v
                for k, v in batch.items()
            }

            # =================================== ae part ===================================
            with th.cuda.amp.autocast(dtype=th.float16,
                                      enabled=self.mp_trainer.use_amp):

                loss = th.tensor(0.).to(dist_util.dev())

                vae_out = self.ddp_rec_model(
                    img=micro['img_to_encoder'],
                    c=micro['c'],
                    behaviour='encoder_vae',
                )  # pred: (B, 3, 64, 64)
                eps = vae_out[self.latent_name]
                # eps = vae_out.pop(self.latent_name)

                if 'bg_plane' in vae_out:
                    eps = th.cat((eps, vae_out['bg_plane']),
                                 dim=1)  # include background, B 12+4 32 32

                p_sample_batch = self.prepare_ddpm(eps)
                cond = self.get_c_input(micro)

                # ! running diffusion forward
                ddpm_ret = self.apply_model(p_sample_batch, cond)
                if self.sde_diffusion.args.p_rendering_loss:

                    target = micro
                    pred = self.ddp_rec_model(
                        # latent=vae_out,
                        latent={
                            # **vae_out,
                            self.latent_name: ddpm_ret['pred_x0_p'],
                            'latent_name': self.latent_name
                        },
                        c=micro['c'],
                        behaviour=self.render_latent_behaviour)

                    # vae reconstruction loss
                    with self.ddp_control_model.no_sync():  # type: ignore
                        p_vae_recon_loss, rec_loss_dict = self.loss_class(
                            pred, target, test_mode=False)
                    log_rec3d_loss_dict(rec_loss_dict)
                    # log_rec3d_loss_dict(
                    #     dict(p_vae_recon_loss=p_vae_recon_loss, ))
                    loss = p_vae_recon_loss + ddpm_ret[
                        'p_eps_objective']  # TODO, add obj_weight_t_p?
                else:
                    loss = ddpm_ret['p_eps_objective'].mean()

                # =====================================================================

            self.mp_trainer.backward(loss)  # joint gradient descent

        # update ddpm accordingly
        self.mp_trainer.optimize(self.opt)

        if dist_util.get_rank() == 0 and self.step % 500 == 0:
            self.log_control_images(vae_out, p_sample_batch, micro, ddpm_ret)

    @th.inference_mode()
    def log_control_images(self, vae_out, p_sample_batch, micro, ddpm_ret):

        eps_t_p, t_p, logsnr_p = (p_sample_batch[k] for k in (
            'eps_t_p',
            't_p',
            'logsnr_p',
        ))
        pred_eps_p = ddpm_ret['pred_eps_p']

        vae_out.pop('posterior')  # for calculating kl loss
        vae_out_for_pred = {
            k: v[0:1].to(dist_util.dev()) if isinstance(v, th.Tensor) else v
            for k, v in vae_out.items()
        }

        pred = self.ddp_rec_model(latent=vae_out_for_pred,
                                  c=micro['c'][0:1],
                                  behaviour=self.render_latent_behaviour)
        assert isinstance(pred, dict)

        pred_img = pred['image_raw']
        gt_img = micro['img']

        if 'depth' in micro:
            gt_depth = micro['depth']
            if gt_depth.ndim == 3:
                gt_depth = gt_depth.unsqueeze(1)
            gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
                                                      gt_depth.min())
        else:
            gt_depth = th.zeros_like(gt_img[:, 0:1, ...])

        if 'image_depth' in pred:
            pred_depth = pred['image_depth']
            pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
                                                            pred_depth.min())
        else:
            pred_depth = th.zeros_like(gt_depth)

        gt_img = self.pool_128(gt_img)
        gt_depth = self.pool_128(gt_depth)
        # cond = self.get_c_input(micro)
        # hint = th.cat(cond['c_concat'], 1)

        gt_vis = th.cat(
            [
                gt_img,
                gt_img,
                gt_img,
                # self.pool_128(hint),
                # gt_img,
                gt_depth.repeat_interleave(3, dim=1)
            ],
            dim=-1)[0:1]  # TODO, fail to load depth. range [0, 1]

        # eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L

        if 'bg_plane' in vae_out:
            noised_latent = {
                'latent_normalized_2Ddiffusion':
                eps_t_p[0:1, :12] * self.triplane_scaling_divider,
                'bg_plane':
                eps_t_p[0:1, 12:16] * self.triplane_scaling_divider,
            }
        else:
            noised_latent = {
                'latent_normalized_2Ddiffusion':
                eps_t_p[0:1] * self.triplane_scaling_divider,
            }

        noised_ae_pred = self.ddp_rec_model(
            img=None,
            c=micro['c'][0:1],
            latent=noised_latent,
            # latent=eps_t_p[0:1] * self.
            # triplane_scaling_divider,  # TODO, how to define the scale automatically
            behaviour=self.render_latent_behaviour)

        pred_x0 = self.sde_diffusion._predict_x0_from_eps(
            eps_t_p, pred_eps_p, logsnr_p)  # for VAE loss, denosied latent

        if 'bg_plane' in vae_out:
            denoised_latent = {
                'latent_normalized_2Ddiffusion':
                pred_x0[0:1, :12] * self.triplane_scaling_divider,
                'bg_plane':
                pred_x0[0:1, 12:16] * self.triplane_scaling_divider,
            }
        else:
            denoised_latent = {
                'latent_normalized_2Ddiffusion':
                pred_x0[0:1] * self.triplane_scaling_divider,
            }

        # pred_xstart_3D
        denoised_ae_pred = self.ddp_rec_model(
            img=None,
            c=micro['c'][0:1],
            latent=denoised_latent,
            # latent=pred_x0[0:1] * self.
            # triplane_scaling_divider,  # TODO, how to define the scale automatically?
            behaviour=self.render_latent_behaviour)

        pred_vis = th.cat(
            [
                self.pool_128(img) for img in (
                    pred_img[0:1],
                    noised_ae_pred['image_raw'][0:1],
                    denoised_ae_pred['image_raw'][0:1],  # controlnet result
                    pred_depth[0:1].repeat_interleave(3, dim=1))
            ],
            dim=-1)  # B, 3, H, W

        vis = th.cat([gt_vis, pred_vis],
                     dim=-2)[0].permute(1, 2,
                                        0).cpu()  # ! pred in range[-1, 1]

        # vis_grid = torchvision.utils.make_grid(vis) # HWC
        vis = vis.numpy() * 127.5 + 127.5
        vis = vis.clip(0, 255).astype(np.uint8)
        Image.fromarray(vis).save(
            f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}.jpg'
        )

        if self.cond_key == 'caption':
            with open(
                    f'{logger.get_dir()}/{self.step+self.resume_step}caption_{t_p[0].item():3}.txt',
                    'w') as f:
                f.write(micro['caption'][0])

        print(
            'log denoised vis to: ',
            f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}.jpg'
        )

        th.cuda.empty_cache()

    @th.inference_mode()
    def eval_cldm(self,
                  prompt="",
                  use_ddim=False,
                  unconditional_guidance_scale=1.0,
                  save_img=False,
                  use_train_trajectory=False,
                  export_mesh=False,
                  camera=None, 
                  overwrite_diff_inp_size=None):
        self.ddpm_model.eval()

        args = dnnlib.EasyDict(
            dict(
                batch_size=self.batch_size,
                image_size=self.diffusion_input_size,
                denoise_in_channels=self.rec_model.decoder.triplane_decoder.
                out_chans,  # type: ignore
                clip_denoised=False,
                class_cond=False,
                use_ddim=use_ddim))

        model_kwargs = {}

        if args.class_cond:
            classes = th.randint(low=0,
                                 high=NUM_CLASSES,
                                 size=(args.batch_size, ),
                                 device=dist_util.dev())
            model_kwargs["y"] = classes

        diffusion = self.diffusion
        sample_fn = (diffusion.p_sample_loop
                     if not args.use_ddim else diffusion.ddim_sample_loop)
        extra_kwargs = {}
        if args.use_ddim:
            extra_kwargs.update(
                dict(
                    unconditional_guidance_scale=unconditional_guidance_scale))

        # for i, batch in enumerate(tqdm(self.eval_data)):
        # if use_train_trajectory:
        #     batch = next(iter(self.data))
        # else:
        # batch = next(iter(self.eval_data))

        # st() # th.save(batch['c'].cpu(), 'assets/shapenet_eval_pose.pt')

        assert camera is not None  # for evaluation
        batch = {'c': camera.clone()}
        # st()

        # use the first frame as the condition now
        novel_view_cond = {
            k:
            v[0:1].to(dist_util.dev()) if isinstance(v, th.Tensor) else v[0:1]
            # micro['img'].shape[0], 0)
            for k, v in batch.items()
        }
        cond = self.get_c_input(novel_view_cond,
                                use_text=prompt != "",
                                prompt=prompt)  # use specific prompt for debug

        # broadcast to args.batch_size
        cond = {
            k: cond_v.repeat_interleave(args.batch_size, 0)
            for k, cond_v in cond.items() if k == self.conditioning_key
        }

        for i in range(1):
            # st()
            noise_size = (
                args.batch_size,
                self.ddpm_model.in_channels,
                self.diffusion_input_size if not overwrite_diff_inp_size else int(overwrite_diff_inp_size),
                self.diffusion_input_size if not overwrite_diff_inp_size else int(overwrite_diff_inp_size)
            )

            triplane_sample = sample_fn(
                self,
                noise_size,
                cond=cond,
                clip_denoised=args.clip_denoised,
                model_kwargs=model_kwargs,
                mixing_normal=True,  # !
                device=dist_util.dev(),
                **extra_kwargs)
            # triplane_sample = th.zeros((args.batch_size, self.ddpm_model.in_channels, self.diffusion_input_size, self.diffusion_input_size), device=dist_util.dev())
            th.cuda.empty_cache()

            for sub_idx in range(triplane_sample.shape[0]):

                self.render_video_given_triplane(
                    triplane_sample[sub_idx:sub_idx + 1],
                    self.rec_model,  # compatible with join_model
                    name_prefix=f'{self.step + self.resume_step}_{i+sub_idx}',
                    save_img=save_img,
                    render_reference=batch,
                    # render_reference=None,
                    export_mesh=export_mesh,
                    render_all=True,
                )

            del triplane_sample
            th.cuda.empty_cache()

        self.ddpm_model.train()

    @th.inference_mode()
    # def eval_loop(self, c_list:list):
    def eval_novelview_loop(self, rec_model):
        # novel view synthesis given evaluation camera trajectory
        video_out = imageio.get_writer(
            f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}.mp4',
            mode='I',
            fps=60,
            codec='libx264')

        all_loss_dict = []
        novel_view_micro = {}

        # for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
        for i, batch in enumerate(tqdm(self.eval_data)):
            # for i in range(0, 8, self.microbatch):
            # c = c_list[i].to(dist_util.dev()).reshape(1, -1)
            micro = {k: v.to(dist_util.dev()) for k, v in batch.items()}

            if i == 0:
                novel_view_micro = {
                    k:
                    v[0:1].to(dist_util.dev()).repeat_interleave(
                        micro['img'].shape[0], 0)
                    for k, v in batch.items()
                }

                torchvision.utils.save_image(
                    self.pool_128(novel_view_micro['img']),
                    logger.get_dir() + '/FID_Cals/gt.png',
                    normalize=True,
                    val_range=(0, 1),
                    padding=0)

            else:
                # if novel_view_micro['c'].shape[0] < micro['img'].shape[0]:
                novel_view_micro = {
                    k:
                    v[0:1].to(dist_util.dev()).repeat_interleave(
                        micro['img'].shape[0], 0)
                    for k, v in novel_view_micro.items()
                }

            th.manual_seed(0)  # avoid vae re-sampling changes results
            pred = rec_model(img=novel_view_micro['img_to_encoder'],
                             c=micro['c'])  # pred: (B, 3, 64, 64)

            # ! move to other places, add tensorboard

            # pred_vis = th.cat([
            #     pred['image_raw'],
            #     -pred['image_depth'].repeat_interleave(3, dim=1)
            # ],
            #                   dim=-1)

            # normalize depth
            # if True:
            pred_depth = pred['image_depth']
            pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
                                                            pred_depth.min())

            # ! save

            pooled_depth = self.pool_128(pred_depth).repeat_interleave(3,
                                                                       dim=1)
            pred_vis = th.cat([
                self.pool_128(micro['img']),
                self.pool_128(pred['image_raw']),
                pooled_depth,
            ],
                              dim=-1)  # B, 3, H, W

            # ! save depth
            name_prefix = i

            torchvision.utils.save_image(self.pool_128(pred['image_raw']),
                                         logger.get_dir() +
                                         '/FID_Cals/{}.png'.format(i),
                                         normalize=True,
                                         val_range=(0, 1),
                                         padding=0)

            torchvision.utils.save_image(self.pool_128(pooled_depth),
                                         logger.get_dir() +
                                         '/FID_Cals/{}_depth.png'.format(i),
                                         normalize=True,
                                         val_range=(0, 1),
                                         padding=0)

            vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
            vis = vis * 127.5 + 127.5
            vis = vis.clip(0, 255).astype(np.uint8)

            for j in range(vis.shape[0]):
                video_out.append_data(vis[j])

        video_out.close()

        del video_out
        # del pred_vis
        # del pred

        th.cuda.empty_cache()