File size: 19,501 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
"""
https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py#L30
"""
import copy
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
from typing import Any
from click import prompt
import einops
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm

from guided_diffusion import dist_util, logger
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion.nn import update_ema
from guided_diffusion.resample import LossAwareSampler, UniformSampler
# from .train_util import TrainLoop3DRec
from guided_diffusion.train_util import (TrainLoop, calc_average_loss,
                                         find_ema_checkpoint,
                                         find_resume_checkpoint,
                                         get_blob_logdir, log_loss_dict,
                                         log_rec3d_loss_dict,
                                         parse_resume_step_from_filename)
from guided_diffusion.gaussian_diffusion import ModelMeanType

from ldm.modules.encoders.modules import FrozenClipImageEmbedder, TextEmbedder, FrozenCLIPTextEmbedder, FrozenOpenCLIPImagePredictionEmbedder, FrozenOpenCLIPImageEmbedder

import dnnlib
from dnnlib.util import requires_grad
from dnnlib.util import calculate_adaptive_weight

from ..train_util_diffusion import TrainLoop3DDiffusion
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD

from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction, different_p_q_objectives, kl_per_group_vada, kl_balancer
# from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD  # joint diffusion and rec class
# from .controlLDM import TrainLoop3DDiffusionLSGM_Control  # joint diffusion and rec class
from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD  # joint diffusion and rec class

# ! add new schedulers from https://github.com/Stability-AI/generative-models

from .crossattn_cldm import TrainLoop3DDiffusionLSGM_crossattn

# import SD stuffs
from typing import Any, Dict, List, Optional, Tuple, Union
from contextlib import contextmanager
from omegaconf import ListConfig, OmegaConf
from sgm.modules import UNCONDITIONAL_CONFIG

from sgm.util import (default, disabled_train, get_obj_from_str,
                      instantiate_from_config, log_txt_as_img)

# from sgm.sampling_utils.demo.streamlit_helpers import init_sampling


class DiffusionEngineLSGM(TrainLoop3DDiffusionLSGM_crossattn):

    def __init__(
        self,
        *,
        rec_model,
        denoise_model,
        diffusion,
        sde_diffusion,
        control_model,
        control_key,
        only_mid_control,
        loss_class,
        data,
        eval_data,
        batch_size,
        microbatch,
        lr,
        ema_rate,
        log_interval,
        eval_interval,
        save_interval,
        resume_checkpoint,
        resume_cldm_checkpoint=None,
        use_fp16=False,
        fp16_scale_growth=0.001,
        schedule_sampler=None,
        weight_decay=0,
        lr_anneal_steps=0,
        iterations=10001,
        ignore_resume_opt=False,
        freeze_ae=False,
        denoised_ae=True,
        triplane_scaling_divider=10,
        use_amp=False,
        diffusion_input_size=224,
        normalize_clip_encoding=False,
        scale_clip_encoding=1,
        cfg_dropout_prob=0,
        cond_key='img_sr',
        use_eos_feature=False,
        compile=False,
        # denoiser_config,
        # conditioner_config: Union[None, Dict, ListConfig,
        #                           OmegaConf] = None,
        # sampler_config: Union[None, Dict, ListConfig, OmegaConf] = None,
        # loss_fn_config: Union[None, Dict, ListConfig, OmegaConf] = None,
        **kwargs):
        super().__init__(rec_model=rec_model,
                         denoise_model=denoise_model,
                         diffusion=diffusion,
                         sde_diffusion=sde_diffusion,
                         control_model=control_model,
                         control_key=control_key,
                         only_mid_control=only_mid_control,
                         loss_class=loss_class,
                         data=data,
                         eval_data=eval_data,
                         batch_size=batch_size,
                         microbatch=microbatch,
                         lr=lr,
                         ema_rate=ema_rate,
                         log_interval=log_interval,
                         eval_interval=eval_interval,
                         save_interval=save_interval,
                         resume_checkpoint=resume_checkpoint,
                         resume_cldm_checkpoint=resume_cldm_checkpoint,
                         use_fp16=use_fp16,
                         fp16_scale_growth=fp16_scale_growth,
                         schedule_sampler=schedule_sampler,
                         weight_decay=weight_decay,
                         lr_anneal_steps=lr_anneal_steps,
                         iterations=iterations,
                         ignore_resume_opt=ignore_resume_opt,
                         freeze_ae=freeze_ae,
                         denoised_ae=denoised_ae,
                         triplane_scaling_divider=triplane_scaling_divider,
                         use_amp=use_amp,
                         diffusion_input_size=diffusion_input_size,
                         normalize_clip_encoding=normalize_clip_encoding,
                         scale_clip_encoding=scale_clip_encoding,
                         cfg_dropout_prob=cfg_dropout_prob,
                         cond_key=cond_key,
                         use_eos_feature=use_eos_feature,
                         compile=compile,
                         **kwargs)

        #  ! sgm diffusion pipeline
        ldm_configs = OmegaConf.load(
            'sgm/configs/txt2img-clipl-compat.yaml')['ldm_configs']

        self.loss_fn = (
            instantiate_from_config(ldm_configs.loss_fn_config)
            # if loss_fn_config is not None
            # else None
        )
        self.denoiser = instantiate_from_config(
            ldm_configs.denoiser_config).to(dist_util.dev())
        self.sampler = (instantiate_from_config(ldm_configs.sampler_config))

        self.conditioner = instantiate_from_config(
            default(ldm_configs.conditioner_config,
                    UNCONDITIONAL_CONFIG)).to(dist_util.dev())

    # ! already merged
    def prepare_ddpm(self, eps, mode='p'):
        raise NotImplementedError('already implemented in self.denoiser')

    # merged from noD.py

    # use sota denoiser, loss_fn etc.
    def ldm_train_step(self, batch, behaviour='cano', *args, **kwargs):
        """
        add sds grad to all ae predicted x_0 
        """

        # ! enable the gradient of both models
        requires_grad(self.ddpm_model, True)

        self.mp_trainer.zero_grad()  # !!!!

        if 'img' in batch:
            batch_size = batch['img'].shape[0]
        else:
            batch_size = len(batch['caption'])

        for i in range(0, batch_size, self.microbatch):

            micro = {
                k:
                v[i:i + self.microbatch].to(dist_util.dev()) if isinstance(
                    v, th.Tensor) else v
                for k, v in batch.items()
            }

            # =================================== ae part ===================================
            # with th.cuda.amp.autocast(dtype=th.bfloat16,
            with th.cuda.amp.autocast(dtype=self.dtype,
                                      enabled=self.mp_trainer.use_amp):

                loss = th.tensor(0.).to(dist_util.dev())

                if 'latent' in micro:
                    vae_out = {self.latent_name: micro['latent']}
                else:
                    vae_out = self.ddp_rec_model(
                        img=micro['img_to_encoder'],
                        c=micro['c'],
                        behaviour='encoder_vae',
                    )  # pred: (B, 3, 64, 64)

                eps = vae_out[self.latent_name] / self.triplane_scaling_divider
                # eps = vae_out.pop(self.latent_name)

                # if 'bg_plane' in vae_out:
                #     eps = th.cat((eps, vae_out['bg_plane']),
                #                  dim=1)  # include background, B 12+4 32 32

                # ! SD loss
                # cond = self.get_c_input(micro, bs=eps.shape[0])
                loss, loss_other_info = self.loss_fn(self.ddp_ddpm_model,
                                                     self.denoiser,
                                                     self.conditioner, eps,
                                                     micro)  # type: ignore
                loss = loss.mean()
                log_rec3d_loss_dict({})

                log_rec3d_loss_dict({
                    'eps_mean':
                    eps.mean(),
                    'eps_std':
                    eps.std([1, 2, 3]).mean(0),
                    'pred_x0_std':
                    loss_other_info['model_output'].std([1, 2, 3]).mean(0),
                    "p_loss":
                    loss,
                })

            self.mp_trainer.backward(loss)  # joint gradient descent

        # update ddpm accordingly
        self.mp_trainer.optimize(self.opt)

        if dist_util.get_rank() == 0 and self.step % 500 == 0:
            self.log_control_images(vae_out, micro, loss_other_info)

    @th.inference_mode()
    def log_control_images(self, vae_out, micro, ddpm_ret):

        # eps_t_p, t_p, logsnr_p = (p_sample_batch[k] for k in (
        #     'eps_t_p',
        #     't_p',
        #     'logsnr_p',
        # ))
        # pred_eps_p = ddpm_ret['pred_eps_p']

        if 'posterior' in vae_out:
            vae_out.pop('posterior')  # for calculating kl loss
        # vae_out_for_pred = {
        #     k: v[0:1].to(dist_util.dev()) if isinstance(v, th.Tensor) else v
        #     for k, v in vae_out.items()
        # }
        vae_out_for_pred = {self.latent_name: vae_out[self.latent_name][0:1].to(self.dtype)}

        with th.cuda.amp.autocast(dtype=self.dtype,
                                    enabled=self.mp_trainer.use_amp):
            pred = self.ddp_rec_model(latent=vae_out_for_pred,
                                    c=micro['c'][0:1],
                                    behaviour=self.render_latent_behaviour)

        assert isinstance(pred, dict)

        pred_img = pred['image_raw']
        if 'img' in micro:
            gt_img = micro['img']
        else:
            gt_img = th.zeros_like(pred['image_raw'])

        if 'depth' in micro:
            gt_depth = micro['depth']
            if gt_depth.ndim == 3:
                gt_depth = gt_depth.unsqueeze(1)
            gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
                                                      gt_depth.min())
        else:
            gt_depth = th.zeros_like(gt_img[:, 0:1, ...])

        if 'image_depth' in pred:
            pred_depth = pred['image_depth']
            pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
                                                            pred_depth.min())
        else:
            pred_depth = th.zeros_like(gt_depth)

        gt_img = self.pool_128(gt_img)
        gt_depth = self.pool_128(gt_depth)
        # cond = self.get_c_input(micro)
        # hint = th.cat(cond['c_concat'], 1)

        gt_vis = th.cat(
            [
                gt_img,
                gt_img,
                gt_img,
                # self.pool_128(hint),
                # gt_img,
                gt_depth.repeat_interleave(3, dim=1)
            ],
            dim=-1)[0:1]  # TODO, fail to load depth. range [0, 1]

        # eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L

        noised_latent, sigmas, x_start = [
            ddpm_ret[k] for k in ['noised_input', 'sigmas', 'model_output']
        ]

        noised_latent = {
            'latent_normalized_2Ddiffusion':
            noised_latent[0:1].to(self.dtype) * self.triplane_scaling_divider,
        }

        denoised_latent = {
            'latent_normalized_2Ddiffusion':
            x_start[0:1].to(self.dtype) * self.triplane_scaling_divider,
        }
         
        with th.cuda.amp.autocast(dtype=self.dtype,
                                    enabled=self.mp_trainer.use_amp):
            noised_ae_pred = self.ddp_rec_model(
                img=None,
                c=micro['c'][0:1],
                latent=noised_latent,
                behaviour=self.render_latent_behaviour)

            # pred_x0 = self.sde_diffusion._predict_x0_from_eps(
            # eps_t_p, pred_eps_p, logsnr_p)  # for VAE loss, denosied latent

            # pred_xstart_3D
            denoised_ae_pred = self.ddp_rec_model(
                img=None,
                c=micro['c'][0:1],
                latent=denoised_latent,
                # latent=pred_x0[0:1] * self.
                # triplane_scaling_divider,  # TODO, how to define the scale automatically?
                behaviour=self.render_latent_behaviour)

        pred_vis = th.cat(
            [
                self.pool_128(img) for img in (
                    pred_img[0:1],
                    noised_ae_pred['image_raw'][0:1],
                    denoised_ae_pred['image_raw'][0:1],  # controlnet result
                    pred_depth[0:1].repeat_interleave(3, dim=1))
            ],
            dim=-1)  # B, 3, H, W

        if 'img' in micro:
            vis = th.cat([gt_vis, pred_vis],
                         dim=-2)[0].permute(1, 2,
                                            0).cpu()  # ! pred in range[-1, 1]
        else:
            vis = pred_vis[0].permute(1, 2, 0).cpu()

        # vis_grid = torchvision.utils.make_grid(vis) # HWC
        vis = vis.numpy() * 127.5 + 127.5
        vis = vis.clip(0, 255).astype(np.uint8)
        img_save_path = f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{sigmas[0].item():3}.jpg'
        Image.fromarray(vis).save(img_save_path)

        # if self.cond_key == 'caption':
        #     with open(f'{logger.get_dir()}/{self.step+self.resume_step}caption_{t_p[0].item():3}.txt', 'w') as f:
        #         f.write(micro['caption'][0])

        print('log denoised vis to: ', img_save_path)

        th.cuda.empty_cache()

    @th.no_grad()
    def sample(
        self,
        cond: Dict,
        uc: Union[Dict, None] = None,
        batch_size: int = 16,
        shape: Union[None, Tuple, List] = None,
        idx_to_render=None, 
        **kwargs,
    ):
        randn = th.randn(batch_size, *shape).to(self.dtype).to(dist_util.dev())

        if idx_to_render is not None:
            randn = randn[idx_to_render]

        with th.cuda.amp.autocast(dtype=self.dtype,
                                    enabled=self.mp_trainer.use_amp):

            denoiser = lambda input, sigma, c: self.denoiser(
                self.model, input, sigma, c, **kwargs)
            samples = self.sampler(denoiser, randn, cond, uc=uc)

        return samples

    @th.inference_mode()
    def eval_cldm(
        self,
        prompt="",
        use_ddim=False,
        unconditional_guidance_scale=1.0,
        save_img=False,
        use_train_trajectory=False,
        camera=None,
        num_samples=1,
        num_instances=1,
        export_mesh=False, # TODO
        idx_to_render=None,
    ):
        # ! slightly modified for new API. combined with
        # /cpfs01/shared/V2V/V2V_hdd/yslan/Repo/generative-models/sgm/models/diffusion.py:249 log_images()
        # TODO, support batch_size > 1

        self.ddpm_model.eval()

        args = dnnlib.EasyDict(
            dict(
                batch_size=1,
                image_size=self.diffusion_input_size,
                denoise_in_channels=self.rec_model.decoder.triplane_decoder.
                out_chans,  # type: ignore
                clip_denoised=False,
                class_cond=False,
                use_ddim=use_ddim))

        model_kwargs = {}

        uc = None
        log = dict()

        ucg_keys = [self.cond_key]

        batch_c = {self.cond_key: prompt}

        c, uc = self.conditioner.get_unconditional_conditioning(
            batch_c,
            force_uc_zero_embeddings=ucg_keys
            if len(self.conditioner.embedders) > 0 else [],
        )

        sampling_kwargs = {'idx_to_render': idx_to_render}

        # N = 32
        th.manual_seed(41) # fix randn seed for all prompt
        N = num_samples
        z_shape = (
            num_samples,
            self.ddpm_model.in_channels if not self.ddpm_model.roll_out else
            3 * self.ddpm_model.in_channels,  # type: ignore
            self.diffusion_input_size,
            self.diffusion_input_size)


        for k in c:
            if isinstance(c[k], th.Tensor):
                # c[k], uc[k] = map(lambda y: y[k][:N].to(dist_util.dev()),
                #                   (c, uc))
                assert c[k].shape[0] == 1
                if idx_to_render is not None:
                    c[k], uc[k] = map(lambda y: y[k].repeat_interleave(idx_to_render.shape[0], 0).to(self.dtype).to(dist_util.dev()),
                                    (c, uc)) # support bs>1 sampling given a condition
                else: 
                    c[k], uc[k] = map(lambda y: y[k].repeat_interleave(N, 0).to(self.dtype).to(dist_util.dev()),
                                    (c, uc)) # support bs>1 sampling given a condition

        samples = self.sample(c,
                              shape=z_shape[1:],
                              uc=uc,
                              batch_size=N,
                              **sampling_kwargs)
        # st() # do rendering first

        # ! get c

        if self.cond_key == 'caption':
            if camera is not None:
                batch = {'c': camera.clone()}
            prefix = prompt
        else:
            prefix = ''
            if use_train_trajectory:
                batch = next(iter(self.data))
            else:
                try:
                    batch = next(self.eval_data)
                except Exception as e:
                    self.eval_data = iter(self.eval_data)
                    batch = next(self.eval_data)

            if camera is not None:
                batch['c'] = camera.clone()

        # rendering
        for i in range(samples.shape[0]):
            th.cuda.empty_cache()

            # ! render sampled latent

            with th.cuda.amp.autocast(dtype=self.dtype,
                                        enabled=self.mp_trainer.use_amp):

                self.render_video_given_triplane(
                    samples[i:i+1].to(self.dtype),
                    self.rec_model,  # compatible with join_model
                    name_prefix=
                    f'{self.step + self.resume_step}{prefix}_{i}',
                    save_img=save_img,
                    render_reference=batch,
                    export_mesh=export_mesh, 
                    render_all=True)

        self.ddpm_model.train()